Trong một lớp học có\[15\] học sinh nam và \[10\] học sinh nữ. Giáo viên gọi \[4\] học sinh lên bảng làm bài tập. Tính xác suất để \[4\] học sinh lên bảng có cả nam và nữ.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{25}^4 = 12650\).
Gọi A là biến cố: “\[4\] học sinh lên bảng có cả nam và nữ”.
TH1: Có 1 nam 3 nữ \( \Rightarrow C_{15}^1.C_{10}^3 = 1800\) cách
TH2: Có 2 nam 2 nữ \( \Rightarrow C_{15}^2.C_{10}^2 = 4725\) cách
TH3: Có 3 nam 1 nữ \( \Rightarrow C_{15}^3.C_{10}^1 = 4550\) cách.
Do đó \(n\left( A \right) = 11075\) cách.
Vậy \(P\left( A \right) = \frac{{11075}}{{12650}} = \frac{{443}}{{506}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì \[A\] và \[B\]là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = 0,3\).
Có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,5 + 0,3 - 0,15 = 0,65.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Trước tiên, ta tìm tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này.
Từ giả thiết, ta có: \(300 = 100.{e^{5r}} \Leftrightarrow {e^{5r}} = 3 \Leftrightarrow 5r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{5} \approx 0,2197\).
Tức là tỉ lệ tăng trưởng của loại vi khuẩn này là 21,97% mỗi giờ.
Từ 100 con để có 200 con thì thời gian cần thiết là bao nhiêu?
Ta có \(200 = 100.{e^{rt}} \Leftrightarrow rt = \ln 2 \Leftrightarrow t = \frac{{\ln 2}}{r} = \frac{{\ln 2}}{{\frac{{\ln 3}}{5}}} \approx 3,15\) (giờ) = 3 giờ 9 phút.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.