Câu hỏi:

30/12/2025 39 Lưu

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác đều cạnh \(a\) và \(SA = \frac{{3a}}{2}\).  Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).

A. \(30^\circ .\)           
B. \(45^\circ .\)   
C. \(60^\circ .\)  
D. \(90^\circ \) .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chóp S.ABC có SA vuông góc (ABC), đáy ABC là tam giác đều cạnh a và SA =3a/2.  Tính số đo góc phẳng nhị diện [S,BC,A]. (ảnh 1)

Gọi \(I\) là trung điểm \(BC \Rightarrow AI \bot BC\) (vì \(ABC\) là tam giác đều).

Ta có: \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot SI\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SI \bot BC\\AI \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SIA}\).

Mà \(\Delta ABC\) đều cạnh \(a \Rightarrow AI = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta SAI\) vuông tại \(A\), ta có: \({\rm{tan}}\widehat {SIA} = \frac{{SA}}{{AI}} = \sqrt 3  \Rightarrow \widehat {SIA} = 60^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \[A\] và \[B\]là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = 0,3\).

Có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,5 + 0,3 - 0,15 = 0,65.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trước tiên, ta tìm tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này.

Từ giả thiết, ta có: \(300 = 100.{e^{5r}} \Leftrightarrow {e^{5r}} = 3 \Leftrightarrow 5r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{5} \approx 0,2197\).

Tức là tỉ lệ tăng trưởng của loại vi khuẩn này là 21,97% mỗi giờ.

Từ 100 con để có 200 con thì thời gian cần thiết là bao nhiêu?

Ta có \(200 = 100.{e^{rt}} \Leftrightarrow rt = \ln 2 \Leftrightarrow t = \frac{{\ln 2}}{r} = \frac{{\ln 2}}{{\frac{{\ln 3}}{5}}} \approx 3,15\) (giờ) = 3 giờ 9 phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP