Trong một môn học, thầy giáo có 20 câu hỏi khác nhau, trong đó có 10 câu hỏi dễ, 6 câu hỏi trung bình và 4 câu hỏi khó. Từ 20 câu hỏi đó lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi, sao cho đề kiểm tra phải có đủ ba loại câu hỏi và có đúng 2 câu hỏi dễ.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Để tạo đề kiểm tra gồm 5 câu hỏi sao cho có đủ ba loại câu hỏi và có đúng 2 câu hỏi dễ sẽ có các phương án sau:
- Phương án 1: Đề gồm 2 câu hỏi dễ, 2 câu trung bình và 1 câu khó có \(C_{10}^2.C_6^2.C_4^1 = 2700\) đề.
- Phương án 2: Đề gồm \(2\) câu hỏi dễ, \(1\) câu trung bình và \(2\) câu khó có \(C_{10}^2.C_6^1.C_4^2 = 1620\) đề.
Áp dụng quy tắc cộng, ta có \(2700 + 1620 = \,4\,\,320\) đề.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Số cách chọn 2 số chẵn trong tập hợp \[\left\{ {2;4;6;8} \right\}\] là: \[C_4^2\] cách.
Số cách chọn 2 số lẻ trong tập hợp \[\left\{ {1;3;5;7;9} \right\}\] là: \[C_5^2\] cách.
Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: \[4!\] cách.
Vậy có \[4!\;.C_4^2.C_5^2\] số tự nhiên thỏa mãn yêu cầu bài toán.
Câu 2
Lời giải
Đáp án đúng là: D
Đường thẳng\(\Delta :\left\{ \begin{array}{l}x = 5 - \frac{1}{2}t\\y = - 3 + 3t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow u = \left( { - \frac{1}{2};\,\,3} \right)\), nên có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,\,\frac{1}{2}} \right)\).
Do đó, nó cũng có một vectơ pháp tuyến là \(\overrightarrow {n'} = 2\overrightarrow n = 2\left( {3;\,\,\frac{1}{2}} \right) = \left( {6;\,\,1} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Trong mặt phẳng tọa độ \(Oxy\), khoảng cách từ gốc tọa độ \(O\) đến đường thẳng \(\Delta :4x - 3y + 1 = 0\) bằng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
