Câu hỏi:

30/12/2025 2 Lưu

Trong một toa tàu có hai ghế băng đối mặt nhau, mỗi ghế có bốn chỗ ngồi. Tổng số tám hành khách, thì ba người muốn ngồi nhìn theo hướng tàu chạy, còn hai người thì muốn ngồi ngược lại, ba người còn lại không có yêu cầu gì. Hỏi có bao nhiêu cách xếp chỗ để thỏa mãn các yêu cầu của hành khách?

A. 1 728;                    
B. 864;                          
C. 288;                       
D. 432.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Số cách sắp xếp ba hành khách ngồi theo hướng tàu chạy là \[A_4^3.\]

Số cách sắp xếp hai hành khách ngồi ngược hướng tàu chạy là \[A_4^2.\]

Số cách sắp xếp ba hành khách còn lại là \[3!.\]

Vậy cách xếp chỗ để thỏa mãn các yêu cầu của hành khách là \[A_4^3.A_4^2.3! = 1728\] cách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để chọn một đội hình ra sân gồm 11 cầu thủ sao cho Quang Hải và Đức Chinh không cùng có mặt có thể thực hiện theo hai phương án sau:

+ Phương án 1: Chọn Quang Hải hoặc Đức Chinh có 2 cách

Chọn thủ môn có \[C_2^1\] cách

Chọn 9 cầu thủ còn lại có \[C_{26}^9.\]

Theo quy tắc nhân, ta có \[2.C_2^1.C_{26}^9\] cách.

+ Phương án 2: Cả hai đều không ra sân

Chọn thủ môn có \[C_2^1\] cách

Chọn 10 cầu thủ còn lại có \[C_{26}^{10}\]

Theo quy tắc nhân, ta có \[C_2^1.C_{26}^{10}\] cách.

Vậy số cách chọn cần tìm là \[2.C_2^1.C_{26}^9 + C_2^1.C_{26}^{10}\] cách.

Lời giải

a) Ta có \[\overrightarrow {MA}  = \left( { - 2 - x;1 - y} \right)\] và \[\overrightarrow {MB}  = \left( {4 - x;3 - y} \right)\]

Do đó \[\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  = \left( {2 - 2x;4 - 2y} \right)\] và \[\overrightarrow v  = \overrightarrow {MA}  - \overrightarrow {MB}  = \left( { - 6; - 2} \right)\].

b) Ta có \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{ - 2 + 4}}{2} = 1\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{1 + 3}}{2} = 2\end{array} \right. \Rightarrow I\left( {1;2} \right) \Rightarrow \overrightarrow {OI}  = \left( {1;2} \right)\).

Hai vectơ \(\overrightarrow u \) và \(\overrightarrow {OI} \) cùng phương \( \Leftrightarrow \overrightarrow u  = k\overrightarrow {OI} ,\,\,\,k \in \mathbb{R},k \ne 0\)

\( \Leftrightarrow \left\{ \begin{array}{l}2 - 2x = k.1\\4 - 2y = k.2\end{array} \right. \Rightarrow 4 - 2y = 2\left( {2 - 2x} \right) \Leftrightarrow y = 2x\)

Vậy tập hợp các điểm \(M\) là đường thẳng \[\left( d \right):{\rm{ }}y = 2x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(5x - 3y - 5 = 0\);                                       

B. \(3x + 5y - 37 = 0\);        

C. \(3x - 5y - 13 = 0\);                                       
D. \(3x + 5y - 20 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 12;                        
B. 6;                              
C. 2;                           
D. 7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 12;                        
B. 220;                          
C. 1 320;                    
D. 60.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(C_6^2 + C_9^4\);                                    
B. \(C_6^2.C_{13}^4\);      
C. \(A_6^2.A_9^4\);      
D. \(C_6^2.C_9^4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP