Câu hỏi:

30/12/2025 56 Lưu

Trong một toa tàu có hai ghế băng đối mặt nhau, mỗi ghế có bốn chỗ ngồi. Tổng số tám hành khách, thì ba người muốn ngồi nhìn theo hướng tàu chạy, còn hai người thì muốn ngồi ngược lại, ba người còn lại không có yêu cầu gì. Hỏi có bao nhiêu cách xếp chỗ để thỏa mãn các yêu cầu của hành khách?

A. 1 728;                    
B. 864;                          
C. 288;                       
D. 432.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Số cách sắp xếp ba hành khách ngồi theo hướng tàu chạy là \[A_4^3.\]

Số cách sắp xếp hai hành khách ngồi ngược hướng tàu chạy là \[A_4^2.\]

Số cách sắp xếp ba hành khách còn lại là \[3!.\]

Vậy cách xếp chỗ để thỏa mãn các yêu cầu của hành khách là \[A_4^3.A_4^2.3! = 1728\] cách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{d_1}\] và \({d_2}\) song song với nhau;   

B. \[{d_1}\] và \({d_2}\) trùng nhau;                

C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;        

D. \[{d_1}\] và \({d_2}\) vuông góc với nhau.

Lời giải

Đáp án đúng là: C

Đường thẳng \({d_1}:2x + 3y - 19 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 22 + 2t\\y = 55 + 5t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {2;\,\,5} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {5;\, - 2} \right)\).

Ta thấy \(\frac{2}{5} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 2.5 + 3.\left( { - 2} \right) = 4 \ne 0\).

Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.

Câu 2

A. \[\left( {9;14} \right)\];                                
B. \[\left( {13;18} \right)\];  
C. \[\left( {17;22} \right)\];                     
D. \[\left( {21;26} \right)\].

Lời giải

Đáp án đúng là: B

Gọi số học sinh tham gia hội nghị là \(n\,\,\left( {n \in {\mathbb{N}^*}} \right)\).

Theo đề bài ta có

\[C_n^2 = 120 \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 120 \Leftrightarrow n\left( {n - 1} \right) = 240\]

\[ \Leftrightarrow {n^2} - n - 240 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 16\\n =  - 15\end{array} \right. \Rightarrow n = 16\].

Câu 4

A. 99;                        
B. 50;                            
C. 20;                         
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong mặt phẳng tọa độ \(Oxy\), cho vectơ \(\overrightarrow a  =  - 2\overrightarrow i  + 4\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là

A. \(\left( { - 1;\,\,2} \right)\);                           
B. \(\left( { - 2;4} \right)\);   
C. \(\left( {2;\,4} \right)\);                     
D. \(\left( { - 2; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP