Câu hỏi:

30/12/2025 2 Lưu

Trong hội nghị học sinh giỏi của trường, khi ra về các em bắt tay nhau. Biết rằng có 120 cái bắt tay và giả sử không em nào bị bỏ sót cũng như bắt tay không lặp lại 2 lần. Số học sinh dự hội nghị thuộc khoảng nào sau đây?

A. \[\left( {9;14} \right)\];                                
B. \[\left( {13;18} \right)\];  
C. \[\left( {17;22} \right)\];                     
D. \[\left( {21;26} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Gọi số học sinh tham gia hội nghị là \(n\,\,\left( {n \in {\mathbb{N}^*}} \right)\).

Theo đề bài ta có

\[C_n^2 = 120 \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 120 \Leftrightarrow n\left( {n - 1} \right) = 240\]

\[ \Leftrightarrow {n^2} - n - 240 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 16\\n =  - 15\end{array} \right. \Rightarrow n = 16\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để chọn một đội hình ra sân gồm 11 cầu thủ sao cho Quang Hải và Đức Chinh không cùng có mặt có thể thực hiện theo hai phương án sau:

+ Phương án 1: Chọn Quang Hải hoặc Đức Chinh có 2 cách

Chọn thủ môn có \[C_2^1\] cách

Chọn 9 cầu thủ còn lại có \[C_{26}^9.\]

Theo quy tắc nhân, ta có \[2.C_2^1.C_{26}^9\] cách.

+ Phương án 2: Cả hai đều không ra sân

Chọn thủ môn có \[C_2^1\] cách

Chọn 10 cầu thủ còn lại có \[C_{26}^{10}\]

Theo quy tắc nhân, ta có \[C_2^1.C_{26}^{10}\] cách.

Vậy số cách chọn cần tìm là \[2.C_2^1.C_{26}^9 + C_2^1.C_{26}^{10}\] cách.

Lời giải

a) Ta có \[\overrightarrow {MA}  = \left( { - 2 - x;1 - y} \right)\] và \[\overrightarrow {MB}  = \left( {4 - x;3 - y} \right)\]

Do đó \[\overrightarrow u  = \overrightarrow {MA}  + \overrightarrow {MB}  = \left( {2 - 2x;4 - 2y} \right)\] và \[\overrightarrow v  = \overrightarrow {MA}  - \overrightarrow {MB}  = \left( { - 6; - 2} \right)\].

b) Ta có \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{ - 2 + 4}}{2} = 1\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{1 + 3}}{2} = 2\end{array} \right. \Rightarrow I\left( {1;2} \right) \Rightarrow \overrightarrow {OI}  = \left( {1;2} \right)\).

Hai vectơ \(\overrightarrow u \) và \(\overrightarrow {OI} \) cùng phương \( \Leftrightarrow \overrightarrow u  = k\overrightarrow {OI} ,\,\,\,k \in \mathbb{R},k \ne 0\)

\( \Leftrightarrow \left\{ \begin{array}{l}2 - 2x = k.1\\4 - 2y = k.2\end{array} \right. \Rightarrow 4 - 2y = 2\left( {2 - 2x} \right) \Leftrightarrow y = 2x\)

Vậy tập hợp các điểm \(M\) là đường thẳng \[\left( d \right):{\rm{ }}y = 2x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 12;                        
B. 220;                          
C. 1 320;                    
D. 60.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong mặt phẳng tọa độ \(Oxy\), cho vectơ \(\overrightarrow a  =  - 2\overrightarrow i  + 4\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là

A. \(\left( { - 1;\,\,2} \right)\);                           
B. \(\left( { - 2;4} \right)\);   
C. \(\left( {2;\,4} \right)\);                     
D. \(\left( { - 2; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{d_1}\] và \({d_2}\) song song với nhau;   

B. \[{d_1}\] và \({d_2}\) trùng nhau;                

C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;        

D. \[{d_1}\] và \({d_2}\) vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong mặt phẳng tọa độ \(Oxy\), khoảng cách từ điểm \(M\left( {5;\,\,1} \right)\) đến đường thẳng \(\Delta :x - 8y + 8 = 0\) bằng

A. \(\frac{1}{{13}}\);  
B. \(\frac{5}{{\sqrt {65} }}\);                           
C. \(\frac{5}{{\sqrt {26} }}\);                    
D. \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP