Góc tạo bởi hai đường thẳng \({d_1}:x + \sqrt 3 y = 0\) và \({d_2}:x + 10 = 0\) bằng
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi \(\varphi \) là góc giữa hai đường thẳng đã cho.
Đường thẳng \({d_1}:x + \sqrt 3 y = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;\,\sqrt 3 } \right)\).
Đường thẳng \({d_2}:x + 10 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\,\,0} \right)\).
Ta có: \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_1}} } \right|}} = \frac{{\left| {1.1 + \sqrt 3 .0} \right|}}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{1}{2}\). Do đó, \(\varphi = 60^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Số cách sắp xếp ba hành khách ngồi theo hướng tàu chạy là \[A_4^3.\]
Số cách sắp xếp hai hành khách ngồi ngược hướng tàu chạy là \[A_4^2.\]
Số cách sắp xếp ba hành khách còn lại là \[3!.\]
Vậy cách xếp chỗ để thỏa mãn các yêu cầu của hành khách là \[A_4^3.A_4^2.3! = 1728\] cách.
Câu 2
A. \[{d_1}\] và \({d_2}\) song song với nhau;
B. \[{d_1}\] và \({d_2}\) trùng nhau;
C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;
Lời giải
Đáp án đúng là: C
Đường thẳng \({d_1}:2x + 3y - 19 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 22 + 2t\\y = 55 + 5t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {2;\,\,5} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {5;\, - 2} \right)\).
Ta thấy \(\frac{2}{5} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 2.5 + 3.\left( { - 2} \right) = 4 \ne 0\).
Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Trong mặt phẳng tọa độ \(Oxy\), cho vectơ \(\overrightarrow a = - 2\overrightarrow i + 4\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.