Câu hỏi:

30/12/2025 32 Lưu

Một hình trụ có bán kính đáy bằng 4cm, chiều cao bằng 12 cm. Tính diện tích xung quanh và thể tích của hình trụ đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi\(R\); \(h\) lần lượt là chiều cao của hình trụ đã cho. Suy ra: R = 4cm; h = 12cm

Diện tích xung quanh của hình trụ: \({S_{xq}}\, = \,2\pi R.h\,\, = \,\,2\pi .\,4.\,12 = \,96\pi \,\,\left( {c{m^2}} \right)\)

Thể tích của hình trụ:\(V\, = \,\pi {R^2}h\, = \,\pi {.4^2}.\,12\, = \,192\pi \,\,\left( {c{m^3}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn tâm O đường kính AB. Trên nửa đường tròn đó lấy điểm C (C khác A và B), kẻ CH vuông góc (ảnh 1)

Ta có: \(\widehat {ACB}\, = \,\widehat {ADB}\, = \,{90^0}\)(góc nội tiếp chắn nửa đường tròn đường kính AB).

Suy ra: \(\widehat {KDB\,} = \,{90^0}\)

Vì \(CH\,\, \bot \,\,AB\) nên \(\widehat {CHB\,} = \,{90^0} \Rightarrow \,\widehat {KHB} = \,{90^0}\).

1. Chứng minh BHKD là một tứ giác nội tiếp.

Tứ giác \(BHKD\) có: \(\,\widehat {KHB} + \,\,\widehat {KDB} = \,{90^0}\, + \,{90^0} = {180^0}\)

\( \Rightarrow \) Tứ giác \(BHKD\) là tứ giác nội tiếp.

2. Chứng minh tam giác ACK đồng dạng với tam giác ADC và chứng minh \(AK.\,AD\, = \,A{C^2}\).

Ta có: (góc nội tiếp cùng chắn cung AC)

Mặt khác \(\widehat {{C_1}\,} = \,\widehat {{B_1}}\) (cùng phụ \(\widehat {{C_2}}\))

Do đó \(\widehat {{C_1}\,} = \,\widehat {{D_1}}\)

Xét tam giác ACK và tam giác ADC có:

\(\widehat {CAD}\): góc chung.

\(\widehat {{C_1}\,} = \,\widehat {{D_1}}\)(chứng minh trên)

Vậy: tam giác ACK đồng dạng với tam giác ADC (g – g)

\( \Rightarrow \)\(\frac{{AC}}{{AD}}\, = \,\frac{{AK}}{{AC}}\)\( \Rightarrow AK\,.\,AD\, = \,A{C^2}\).

Lời giải

         1. \({x^2} + x - 10 = 0\)

         Vì \(a.c = \,1.\left( { - 10} \right)\, = \, - 10 < 0\) nên phương trình đã cho có hai nghiệm phân biệt \({x_1};\,{x_2}\).

         Theo định lý Vi – ét, ta có:

         \(\left\{ \begin{array}{l}S\, = \,{x_1}\, + \,{x_2}\, = \,\frac{{ - b}}{a}\, = \, - 1\\P\, = \,{x_1}{x_2}\, = \,\frac{c}{a}\, = \, - 10\end{array} \right.\)

         Ta có: \(A\, = \,x_1^2\, + \,x_2^2\, - 3{x_1}{x_2} = \,{S^2}\, - 2P\, - 3P\, = \,{S^2} - 5P\, = \,{\left( { - 1} \right)^2} - 5.\left( { - 10} \right) = 51\)

         2. \({x^2} + \,\left( {m + 1} \right)x + \frac{1}{4}{m^2} + 1\, = 0\)

            \(\Delta \, = \,{\left( {m + 1} \right)^2}\, - 4.1.\left( {\frac{1}{4}{m^2} + 1} \right)\, = \,2m - 3\)

            Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow 2m\, - 3 > \,0 \Leftrightarrow m\, > \frac{3}{2}\).

            Vậy \(m\, > \,\frac{3}{2}\) thỏa yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP