Câu hỏi:

31/12/2025 52 Lưu

Một chiếc cổng có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 72 m so với mặt đất (điểm M), người ta thả một quả cầu sắt. Vị trí chạm đất của quả cầu cách chân chổng A một đoạn khoảng 17 m. Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị).

Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

192

Chọn hệ trục tọa độ như hình vẽ

Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị). (ảnh 2)

Phương trình \(\left( P \right):y =  - a{x^2} + h\left( {a > 0} \right)\).

Vì \(\left( P \right)\) đi qua hai điểm \(M\left( { - 64;72} \right),A\left( { - 81;0} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - 4096a + h = 72\\ - 6561a + h = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{72}}{{2465}}\\h \approx 192\end{array} \right.\).

Vậy chiều cao của cổng khoảng 192 m.

Trả lời: 192.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

Đúng
Sai

b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

c) Trong ba số \(a,b,c\) có đúng hai số dương.

Đúng
Sai
d) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 1.
Đúng
Sai

Lời giải

Lời giải

a) Dựa vào đồ thị hàm số, ta có tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

b) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).

c) Bề lõm của đồ thị quay lên trên nên \(a > 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0\).

Hoành độ của đỉnh \(I\) là \(x =  - \frac{b}{{2a}} < 0\) mà \(a > 0\) nên \(b > 0\).

Vậy \(a > 0,b > 0,c > 0\).

d) Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} =  - 1\\a - b + c = 0\\c = 1\end{array} \right.\)\(\left\{ \begin{array}{l}a = 1\\b = 2\\c = 1\end{array} \right.\). Vậy \(\left( P \right):y = {x^2} + 2x + 1\).

Cho hàm số bậc hai y = ax^2 + bx + c có đồ thị là parabol (P) như hình a) Tọa độ đỉnh của (P) là (- 1;0). (ảnh 2)

Dựa vào đồ thị hàm số, ta có giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 4.

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Sai.

Câu 2

a) Trục đối xứng của đồ thị là đường thẳng \(x =  - 2\).

Đúng
Sai

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

Đúng
Sai

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

Đúng
Sai
d) Hàm số đã cho là \(y = 2{x^2} - 2x + 6\).
Đúng
Sai

Lời giải

Lời giải

a) Dựa vào đồ thị hàm số, ta có trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Dựa vào đồ thị hàm số, đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

d) Gọi \(\left( P \right):y = a{x^2} + bx + c\).

Dựa vào đồ thị hàm số, ta có đồ thị hàm số đi qua các điểm \(\left( {1;0} \right),\left( {3;0} \right),\left( {2; - 2} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l}a + b + c = 0\\9a + 3b + c = 0\\4a + 2b + c =  - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 8\\c = 6\end{array} \right.\).

Vậy \(\left( P \right):y = 2{x^2} - 8x + 6\).

Đáp án: a) Sai;     b) Đúng;    c) Đúng;     d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Trục đối xứng của parabol là trục tung.
Đúng
Sai
b) Parabol có bề lõm quay lên.
Đúng
Sai
c) \(f\left( 0 \right) < 0\).
Đúng
Sai
d) Tập nghiệm của bất phương trình \(f\left( x \right) < 0\) là \(S = \left( { - 3;1} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP