Câu hỏi:

31/12/2025 3 Lưu

Một chiếc cổng có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 72 m so với mặt đất (điểm M), người ta thả một quả cầu sắt. Vị trí chạm đất của quả cầu cách chân chổng A một đoạn khoảng 17 m. Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị).

Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

192

Chọn hệ trục tọa độ như hình vẽ

Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị). (ảnh 2)

Phương trình \(\left( P \right):y =  - a{x^2} + h\left( {a > 0} \right)\).

Vì \(\left( P \right)\) đi qua hai điểm \(M\left( { - 64;72} \right),A\left( { - 81;0} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - 4096a + h = 72\\ - 6561a + h = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{72}}{{2465}}\\h \approx 192\end{array} \right.\).

Vậy chiều cao của cổng khoảng 192 m.

Trả lời: 192.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Lời giải

Lời giải

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x =  - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 =  - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P):y = x^2 - 4x + 3. a) Trục đối xứng của đồ thị hàm số là đường thẳng x = 2. (ảnh 1)

Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

Lời giải

Lời giải

Để \(f\left( x \right) \ge 0,\forall x \in \mathbb{R}\) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - \left( {m + 5} \right) \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {m^2} - 3m - 4 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\ - 1 \le m \le 4\end{array} \right.\).

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1;2;3;4} \right\}\).

Tổng các giá trị nguyên của \(m\) là 9.

Trả lời: 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - 3\). 
B. \(1\).        
C. \(3\). 
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số \(y =  - 3{x^2} + x + 2\) có giá trị lớn nhất bằng \(\frac{{25}}{{12}}\).     
B. Hàm số \(y =  - 3{x^2} + x + 2\) có giá trị nhỏ nhất bằng \(\frac{{25}}{{12}}\).     
C. Hàm số \(y =  - 3{x^2} + x + 2\) có giá trị lớn nhất bằng \(\frac{{25}}{3}\).     
D. Hàm số \(y =  - 3{x^2} + x + 2\) có giá trị nhỏ nhất bằng \(\frac{{25}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right) = {x^4} - {x^2} + 1\) là tam thức bậc hai.                           
B. \(f\left( x \right) = 2x - 4\) là tam thức bậc hai. 
C. \(f\left( x \right) = 3{\left( {\sqrt[3]{x}} \right)^2} + 2x - 1\) là tam thức bậc hai.   
D. \(f\left( x \right) = 3{x^2} - 4x - 5\) là tam thức bậc hai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP