B. Tự luận
Bác An xây một chiếc cổng hình parabol và gắn cửa hình chữ nhật bên dưới cổng (như hình vẽ). Biết chiều cao của cổng là 3 m và biết cánh cửa có chiều cao 2m, chiều rộng 3 m. Hãy tính khoảng cách giữa 2 chân cổng (tức là tính độ dài \(AB\)).
B. Tự luận
Bác An xây một chiếc cổng hình parabol và gắn cửa hình chữ nhật bên dưới cổng (như hình vẽ). Biết chiều cao của cổng là 3 m và biết cánh cửa có chiều cao 2m, chiều rộng 3 m. Hãy tính khoảng cách giữa 2 chân cổng (tức là tính độ dài \(AB\)).

Quảng cáo
Trả lời:
Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right):y = a{x^2} + bx + c\) với \(a < 0\).
Khi đó \(\left( P \right)\) nhận \(x = 0\) làm trục đối xứng và đi qua điểm \(G\left( {0;3} \right),E\left( {\frac{3}{2};2} \right)\).
Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 0\\c = 3\\\frac{9}{4}a + \frac{3}{2}b + c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{4}{9}\\b = 0\\c = 3\end{array} \right.\).
Vậy \(\left( P \right):y = - \frac{4}{9}{x^2} + 3\).
Cho \(y = 0\)\( \Rightarrow - \frac{4}{9}{x^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 3 }}{2}\\x = - \frac{{3\sqrt 3 }}{2}\end{array} \right.\).
Vậy khoảng cách giữa hai chân cổng là \(3\sqrt 3 \) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).
b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).
c) Giá trị nhỏ nhất của hàm số là \( - 2\).
Lời giải
Lời giải
a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = - \frac{{ - 4}}{{2 \cdot 1}} = 2\).
b) Tọa độ đỉnh \(I\) của \(\left( P \right)\) là \(\left\{ \begin{array}{l}x = - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 = - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).
Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).
c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.
d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).
Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).
Có \({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
Lời giải
Lời giải
Để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt thì \(\Delta ' = {\left( { - 1} \right)^2} - 1 \cdot m > 0 \Leftrightarrow m < 1\). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

