Cho đường tròn \(\left( C \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 5\) và điểm \(M\left( {0;1} \right)\) thuộc \(\left( C \right)\). Viết phương trình tiếp tuyến tại \(M\) của \(\left( C \right)\).
Quảng cáo
Trả lời:
Lời giải
Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;3} \right)\) và \(R = \sqrt 5 \).
Tiếp tuyến tại \(M\) của \(\left( C \right)\) nhận \(\overrightarrow {IM} = \left( {1; - 2} \right)\) làm vectơ pháp tuyến có phương trình là
\(x - 2\left( {y - 1} \right) = 0 \Leftrightarrow x - 2y + 2 = 0\). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vị trí ban đầu của tàu \(B\) tại điểm \({M_0}\) ứng với \(t = 0\). Khi đó \({M_0}\left( {1;5} \right)\).
Tàu \(A\) di chuyển theo đường thẳng \(\Delta :7x + 6y - 9 = 0\).
Khoảng cách ngắn nhất giữa hai tàu bằng \(d\left( {{M_0},\Delta } \right) = \frac{{\left| {7 \cdot 1 + 6 \cdot 5 - 9} \right|}}{{\sqrt {{7^2} + {6^2}} }} = \frac{{28\sqrt {85} }}{{85}} \approx 3,04\).
Trả lời: 3,04.
Lời giải
Lời giải
Theo đề ta có \(\left\{ \begin{array}{l}{F_1}{F_2} = 2c = 6\\M{F_1} + M{F_2} = 2a = 10\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = 3\\a = 5\end{array} \right.\)\( \Rightarrow b = \sqrt {{a^2} - {c^2}} = \sqrt {25 - 9} = 4\).
Vậy phương trình \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).
Gọi hình chữ nhật nội tiếp elip có tọa độ các đỉnh lần lượt là \(\left( {x;y} \right);\left( {x; - y} \right);\left( { - x;y} \right);\left( { - x; - y} \right)\) với \(x,y > 0\).
Khi đó diện tích hình chữ nhật là \(S = 2x \cdot 2y = 4xy\).
Vì \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1 \Rightarrow y = 4\sqrt {1 - \frac{{{x^2}}}{{25}}} \). Do đó \(S = 16x\sqrt {1 - \frac{{{x^2}}}{{25}}} \)\( = \frac{{16}}{5}\sqrt {{x^2}\left( {25 - {x^2}} \right)} \).
Ta có \(\sqrt {{x^2}\left( {25 - {x^2}} \right)} \le \frac{{{x^2} + 25 - {x^2}}}{2} = \frac{{25}}{2}\) (Áp dụng bất đẳng thức Côsi).
Do đó \(S \le \frac{{16}}{5} \cdot \frac{{25}}{2} = 40\).
Vậy diện tích lớn nhất của hình chữ nhật dùng để trồng hoa là 40 m2.
Trả lời: 40.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
