Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:x - 2y - 2 = 0\) và ba điểm \(A\left( {3;4} \right),B\left( { - 1;2} \right),C\left( {0;1} \right)\). Biết rằng tồn tại duy nhất điểm \(M\left( {a;b} \right)\) thuộc đường thẳng \(d\) để biểu thức \(\left| {\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Tính giá trị của biểu thức \(P = a + 2b\).
Quảng cáo
Trả lời:
Đáp án:
Lời giải
Giả sử \(I\left( {m;n} \right)\) thỏa mãn \(\overrightarrow {IA} - 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \).
Ta có \(\overrightarrow {IA} = \left( {3 - m;4 - n} \right);\overrightarrow {IB} = \left( { - 1 - m;2 - n} \right);\overrightarrow {IC} = \left( { - m;1 - n} \right)\).
Khi đó ta có \(\left\{ \begin{array}{l}3 - m - 2\left( { - 1 - m} \right) + 3\left( { - m} \right) = 0\\4 - n - 2\left( {2 - n} \right) + 3\left( {1 - n} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = \frac{5}{2}\\n = \frac{3}{2}\end{array} \right.\)\( \Rightarrow I\left( {\frac{5}{2};\frac{3}{2}} \right)\).
Ta có \(\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} = \overrightarrow {MI} + \overrightarrow {IA} - 2\overrightarrow {MI} - 2\overrightarrow {IB} + 3\overrightarrow {MI} + 3\overrightarrow {IC} = 2\overrightarrow {MI} \).
Để \(\left| {\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất thì \(\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(M\) là hình chiếu của \(I\) trên đường thẳng \(d\).
Gọi \(\Delta \) là đường thẳng đi qua \(I\) và vuông góc với đường thẳng \(d\) có phương trình là
\(2\left( {x - \frac{5}{2}} \right) + \left( {y - \frac{3}{2}} \right) = 0\)\( \Leftrightarrow 2x + y - \frac{{13}}{2} = 0\).
Tọa độ điểm \(M\) là nghiệm của hệ \(\left\{ \begin{array}{l}2x + y - \frac{{13}}{2} = 0\\x - 2y - 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \frac{1}{2}\end{array} \right.\)\( \Rightarrow M\left( {3;\frac{1}{2}} \right)\).
\(P = a + 2b = 4\).
Trả lời: 4.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gắn hình parabol vào hệ trục như đề bài, dựa vào giả thiết bài toán ta có tọa độ điểm \(A\left( {30;20} \right)\).
Parabol đi qua điểm \(A\) nên ta có phương trình \({20^2} = 2p \cdot 30 \Leftrightarrow p = \frac{{20}}{3}\).
Vậy ta có phương trình chính tắc của parabol là \({y^2} = \frac{{40x}}{3}\).
Lời giải
Lời giải
Theo đề ta có \({F_1}{F_2} = 2c = 50 \Rightarrow c = 25\) và \(M{F_1} + M{F_2} = 2a = 100 \Rightarrow a = 50\).
Lại có \({b^2} = {a^2} - {c^2} = {50^2} - {25^2} = 1875\).
Vậy elip có phương trình \(\frac{{{x^2}}}{{2500}} + \frac{{{y^2}}}{{1875}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

