Câu hỏi:

31/12/2025 5 Lưu

Một chiếc Phà chở khách qua sông từ điểm \(A\left( {1;2} \right)\) đến điểm \(B\left( {1;50} \right)\) bên kia sông. Nhưng vì có gió và nước chảy mạnh nên chiếc Phà qua bên kia sông tại điểm \(C\left( {38;50} \right)\). Góc lệch của Phà với lúc dự tính ban đầu là bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

38

Lời giải

Ta có \(\overrightarrow {AB}  = \left( {0;48} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\) nên \(\overrightarrow {{n_1}}  = \left( {1;0} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Ta có \(\overrightarrow {AC}  = \left( {37;48} \right)\)là một vectơ chỉ phương của đường thẳng \(AC\) nên \(\overrightarrow {{n_2}}  = \left( { - 48;37} \right)\) là một vectơ pháp tuyến của đường thẳng \(AC\).

Góc lệch của Phà với lúc dự tính ban đầu chính là góc giữa hai đường thẳng \(AB\) và \(AC\).

Ta có \(\cos \left( {AB,AC} \right) = \frac{{\left| {1 \cdot \left( { - 48} \right) + 0 \cdot 37} \right|}}{{\sqrt {{1^2} + {0^2}}  \cdot \sqrt {{{\left( { - 48} \right)}^2} + {{37}^2}} }} = \frac{{48}}{{\sqrt {3673} }}\)\( \Rightarrow \widehat A \approx 38^\circ \).

Trả lời: 38.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Theo đề ta có \({F_1}{F_2} = 2c = 50 \Rightarrow c = 25\) và \(M{F_1} + M{F_2} = 2a = 100 \Rightarrow a = 50\).

Lại có \({b^2} = {a^2} - {c^2} = {50^2} - {25^2} = 1875\).

Vậy elip có phương trình \(\frac{{{x^2}}}{{2500}} + \frac{{{y^2}}}{{1875}} = 1\).

Lời giải

Lời giải

Theo đề ta có \(\left\{ \begin{array}{l}M{F_1} + M{F_2} = 2a\\{F_1}{F_2} = 2c\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a = 50\\2c = 40\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 25\\c = 20\end{array} \right. \Rightarrow b = \sqrt {{a^2} - {c^2}}  = 15\).

Diện tích của \(\left( E \right)\) là \(S = \pi  \cdot 25 \cdot 15 = 375\pi \).

Diện tích hình tròn là \(S = \pi {R^2} = 225\pi \).

Suy ra diện tích đường đi là \(375\pi  - 225\pi  = 150\pi \).

Câu 6

A. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\). 
B. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} =  - 1\left( {a > b > 0} \right)\).  
C. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).    
D. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} =  - 1\left( {a > b > 0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1\).
B. \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} =  - 1\). 
C. \(\frac{{{x^2}}}{{20}} + \frac{{{y^2}}}{{16}} = 1\).   
D. \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{9} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP