Một chiếc đèn có mặt cắt ngang là hình parabol. Hình parabol có chiều rộng giữa hai mép vành là \(AB = 40\;{\rm{cm}}\) và chiều sâu \(h = 30\;{\rm{cm}}\)(\(h\) bằng khoảng cách từ \(O\) đến \(AB\)). Bóng đèn nằm ở tiêu điểm \(S\). Viết phương trình chính tắc của parabol đó.

Một chiếc đèn có mặt cắt ngang là hình parabol. Hình parabol có chiều rộng giữa hai mép vành là \(AB = 40\;{\rm{cm}}\) và chiều sâu \(h = 30\;{\rm{cm}}\)(\(h\) bằng khoảng cách từ \(O\) đến \(AB\)). Bóng đèn nằm ở tiêu điểm \(S\). Viết phương trình chính tắc của parabol đó.

Quảng cáo
Trả lời:
Lời giải
Gắn hình parabol vào hệ trục như đề bài, dựa vào giả thiết bài toán ta có tọa độ điểm \(A\left( {30;20} \right)\).
Parabol đi qua điểm \(A\) nên ta có phương trình \({20^2} = 2p \cdot 30 \Leftrightarrow p = \frac{{20}}{3}\).
Vậy ta có phương trình chính tắc của parabol là \({y^2} = \frac{{40x}}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Theo đề ta có \({F_1}{F_2} = 2c = 50 \Rightarrow c = 25\) và \(M{F_1} + M{F_2} = 2a = 100 \Rightarrow a = 50\).
Lại có \({b^2} = {a^2} - {c^2} = {50^2} - {25^2} = 1875\).
Vậy elip có phương trình \(\frac{{{x^2}}}{{2500}} + \frac{{{y^2}}}{{1875}} = 1\).
Lời giải
Lời giải
Theo đề ta có \(\left\{ \begin{array}{l}M{F_1} + M{F_2} = 2a\\{F_1}{F_2} = 2c\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a = 50\\2c = 40\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 25\\c = 20\end{array} \right. \Rightarrow b = \sqrt {{a^2} - {c^2}} = 15\).
Diện tích của \(\left( E \right)\) là \(S = \pi \cdot 25 \cdot 15 = 375\pi \).
Diện tích hình tròn là \(S = \pi {R^2} = 225\pi \).
Suy ra diện tích đường đi là \(375\pi - 225\pi = 150\pi \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
