Câu hỏi:

31/12/2025 34 Lưu

Một chiếc đèn có mặt cắt ngang là hình parabol. Hình parabol có chiều rộng giữa hai mép vành là \(AB = 40\;{\rm{cm}}\) và chiều sâu \(h = 30\;{\rm{cm}}\)(\(h\) bằng khoảng cách từ \(O\) đến \(AB\)). Bóng đèn nằm ở tiêu điểm \(S\). Viết phương trình chính tắc của parabol đó.

Một chiếc đèn có mặt cắt ngang là hình parabol. Hình parabol có chiều rộng giữa hai mép vành là AB = 40cm và chiều sâu h = 30cm h bằng khoảng cách từ O đến (AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Một chiếc đèn có mặt cắt ngang là hình parabol. Hình parabol có chiều rộng giữa hai mép vành là AB = 40cm và chiều sâu h = 30cm h bằng khoảng cách từ O đến (AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó. (ảnh 2)

Gắn hình parabol vào hệ trục như đề bài, dựa vào giả thiết bài toán ta có tọa độ điểm \(A\left( {30;20} \right)\).

Parabol đi qua điểm \(A\) nên ta có phương trình \({20^2} = 2p \cdot 30 \Leftrightarrow p = \frac{{20}}{3}\).

Vậy ta có phương trình chính tắc của parabol là \({y^2} = \frac{{40x}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Giả sử \(\Delta \) cắt các tia \(Ox,Oy\) lần lượt tại \(A\left( {a;0} \right),B\left( {0;b} \right),a > 0,b > 0\)\( \Rightarrow \Delta :\frac{x}{a} + \frac{y}{b} = 1\).

Vì \(\Delta \) đi qua \(M\left( { - 2;2} \right) \Rightarrow \frac{{ - 2}}{a} + \frac{2}{b} = 1\) (1).

Mà \({S_{\Delta ABO}} = \frac{1}{2}OA \cdot OB = \frac{{ab}}{2} = 1 \Leftrightarrow ab = 2 \Rightarrow b = \frac{2}{a}\left( 2 \right)\).

Thay \(\left( 2 \right)\) vào (1) ta được \(\frac{{ - 2}}{a} + \frac{2}{{\frac{2}{a}}} = 1 \Leftrightarrow \frac{{ - 2}}{a} + a = 1 \Leftrightarrow {a^2} - a - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}a =  - 1\\a = 2\end{array} \right. \Rightarrow a = 2\).

Với \(a = 2 \Rightarrow b = 1\). Do đó \(\Delta :\frac{x}{2} + \frac{y}{1} = 1\).

Lời giải

Lời giải

Có \(\overrightarrow {AB}  = \left( { - 1;3} \right)\) là vectơ chỉ phương của \(AB\) nên nhận \(\overrightarrow n  = \left( {3;1} \right)\) làm vectơ pháp tuyến.

Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow n  = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + y - 8 = 0\).

Vì \(C \in d \Rightarrow C\left( {t;2t - 8} \right)\).

Ta có \(AB = \sqrt {10} \) mà \({S_{\Delta ABC}} = 2 \Rightarrow d\left( {C,AB} \right) = \frac{4}{{\sqrt {10} }}\).

Khi đó \(\frac{{\left| {3t + \left( {2t - 8} \right) - 8} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \frac{4}{{\sqrt {10} }}\)\( \Leftrightarrow \left| {5t - 16} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = \frac{{12}}{5}\end{array} \right.\).

Với \(t = 4 \Rightarrow C\left( {4;0} \right)\) (loại).

Với \(t = \frac{{12}}{5} \Rightarrow C\left( {\frac{{12}}{5}; - \frac{{16}}{5}} \right)\). Do đó \(a + 2b =  - 4\).

Trả lời: −4.

Câu 3

A. \(\frac{x}{3} - \frac{y}{2} =  - 1\).           
B. \(\frac{x}{{ - 2}} + \frac{y}{3} = 1\).       
C. \(\frac{x}{3} - \frac{y}{2} = 1\).      
D. \(\frac{x}{3} - \frac{y}{2} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Độ dài vectơ \(\overrightarrow {OA} \) bằng \(\sqrt {10} \).

Đúng
Sai

b) Phương trình đường thẳng đi qua điểm \(A\) và vuông góc với \(BC\) là \(4x - 3y - 15 = 0\).

Đúng
Sai

c) Khoảng cách từ điểm \(B\) đến đường thẳng \(AC\) là \(\frac{{\sqrt {13} }}{5}\).

Đúng
Sai
d) Đường thẳng \(d'\) đối xứng với \(d:x - 2y + 1 = 0\) qua điểm \(A\) là \(x - 2y + 9 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2x + 3y + 4 = 0\). 
B. \(2x + 3y - 3 = 0\). 
C. \(x + 3y + 5 = 0\).  
D. \(3x - 2y - 7 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP