Có \[3\] viên bi đen khác nhau, \[4\] viên bi đỏ khác nhau, \[5\] viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Số các hoán vị về màu bi khi xếp thành dãy là: \[3!\];
Số cách xếp \[3\] viên bi đen khác nhau thành dãy là: \[3!\];
Số cách xếp \[4\] viên bi đỏ khác nhau thành dãy là \[4!\];
Số cách xếp \[5\] viên bi xanh khác nhau thành dãy là \[5!\];
Vậy nên số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là \[3!.3!.4!.5! = 103\,\,680\] cách.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
+) Với \[m = 0\;\] thì \[f\left( x \right) = - x - 1\] lấy cả giá trị âm và dương (ví dụ \[f\left( { - 2} \right) = 1\]) nên \[m = 0\;\] không thỏa mãn yêu cầu bài toán.
+) Với \[m \ne 0\] thì \[f\left( x \right) = m{x^2} - x - 1\] là tam thức bậc hai, do đó:
\[f\left( x \right) < 0,\,\forall x \Leftrightarrow \left\{ \begin{array}{l}a = m < 0\\\Delta = 1 + 4m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m < \frac{{ - 1}}{4}\end{array} \right. \Leftrightarrow m < - \frac{1}{4}\].
Vậy với \[m < - \frac{1}{4}\] thì biểu thức \[f\left( x \right)\] luôn nhận giá trị âm.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số xác định khi \[\left\{ \begin{array}{l}6 - x \ge 0\\x - 1 \ge 0\\1 + \sqrt {x - 1} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 6\\x \ge 1\end{array} \right. \Leftrightarrow 1 \le x \le 6\]
Vậy tập xác định của hàm số là \[D = \left[ {1;\,6} \right]\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.