Câu hỏi:

02/01/2026 13 Lưu

Góc giữa hai đường thẳng \(a:2x - y - 10 = 0\) và \(b:x - 3y - 9 = 0\) bằng

A. 30°;                       
B. 45°;                           
C. 60°;                       
D. 90°.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Gọi \(\varphi \) là góc giữa hai đường thẳng \(a\) và \(b\).

Đường thẳng \(a:2x - y - 10 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;\,\, - 1} \right)\);

Đường thẳng \(b:x - 3y - 9 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1;\, - 3} \right)\).

Ta có: \(\cos \varphi  = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\).

Do đó, \(\varphi  = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 0;                              
B. 1;                          
C. 2;                           
D. 3.

Lời giải

Đáp án đúng là: B

Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 4x}  = 2x - 2\] ta được

\( - {x^2} + 4x = 4{x^2} - 8x + 4\).

Sau khi thu gọn ta được \(5{x^2} - 12x + 4 = 0\). Từ đó tìm được \(x = 2\) hoặc \(x = \frac{2}{5}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có \(x = 2\) thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là \(x = 2\).  

Câu 2

A. 2;                              
B. 4;                          
C. 1;                           
D. 3.

Lời giải

Ta có:

\(\sqrt { - {x^2} + 4x - 3}  = \sqrt {2m + 3x - {x^2}} \)\( \Leftrightarrow \left\{ \begin{array}{l} - {x^2} + 4x - 3 \ge 0\\ - {x^2} + 4x - 3 = 2m + 3x - {x^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 \le x \le 3\\x = 2m + 3\end{array} \right.\)

Để phương trình (1) có nghiệm thì \(1 \le 2m + 3 \le 3 \Leftrightarrow  - 1 \le m \le 0 \Rightarrow m \in \left[ { - 1;\,\,0} \right]\).

Suy ra \(a =  - 1,\,\,b = 0\), do đó \({a^2} + {b^2} = {\left( { - 1} \right)^2} + {0^2} = 1\).

Câu 3

A. \(\left( {0;\,\,4} \right)\);                              
B. \(\left( {0;\,\,2} \right)\);  
C. \(\left( {2;\,\,0} \right)\);                     
D. \(\left( {4;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\];         

B. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[{\left( {a{x^2} + bx + c} \right)^2} = {\left( {d{x^2} + ex + f} \right)^2}\];              

C. Mọi nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] đều là nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \];  

D. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập hợp các nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] thỏa mãn bất phương trình \(a{x^2} + bx + c \ge 0\) (hoặc \(d{x^2} + ex + f \ge 0\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = \left[ { - 1;4} \right]\);                         
B. \(S = \left( { - \infty ; - 1} \right)\);                                  
C.\(S = \left( {4; + \infty } \right)\);                  
D.\(S = \left( { - 1;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP