Câu hỏi:

02/01/2026 82 Lưu

Một mảnh vườn hình elip có độ dài trục lớn bằng 12 m, độ dài trục bé bằng 8 m. Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ.

Hỏi diện tích trồng hoa lớn nhất có thể là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt phương trình chính tắc của elip có dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \(\left( {a > b > 0} \right)\).

Theo bài ra ta có: \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\).

Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).

Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là một đỉnh hình chữ nhật  với \({x_C} > 0,{y_C} > 0\).

Do \(C \in \left( E \right)\)\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\).

Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).

Vậy diện tích trồng hoa lớn nhất có thể là \(48\,\,{{\rm{m}}^{\rm{2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 0;                              
B. 1;                          
C. 2;                           
D. 3.

Lời giải

Đáp án đúng là: B

Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 4x}  = 2x - 2\] ta được

\( - {x^2} + 4x = 4{x^2} - 8x + 4\).

Sau khi thu gọn ta được \(5{x^2} - 12x + 4 = 0\). Từ đó tìm được \(x = 2\) hoặc \(x = \frac{2}{5}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có \(x = 2\) thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là \(x = 2\).  

Câu 2

A. 2;                              
B. 4;                          
C. 1;                           
D. 3.

Lời giải

Ta có:

\(\sqrt { - {x^2} + 4x - 3}  = \sqrt {2m + 3x - {x^2}} \)\( \Leftrightarrow \left\{ \begin{array}{l} - {x^2} + 4x - 3 \ge 0\\ - {x^2} + 4x - 3 = 2m + 3x - {x^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 \le x \le 3\\x = 2m + 3\end{array} \right.\)

Để phương trình (1) có nghiệm thì \(1 \le 2m + 3 \le 3 \Leftrightarrow  - 1 \le m \le 0 \Rightarrow m \in \left[ { - 1;\,\,0} \right]\).

Suy ra \(a =  - 1,\,\,b = 0\), do đó \({a^2} + {b^2} = {\left( { - 1} \right)^2} + {0^2} = 1\).

Câu 3

A. \(\left( {0;\,\,4} \right)\);                              
B. \(\left( {0;\,\,2} \right)\);  
C. \(\left( {2;\,\,0} \right)\);                     
D. \(\left( {4;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 3;                          
B. 4;                              
C. 5;                           
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ { - 1;\,\,7} \right]\);                           
B. \(\left[ { - 7;\,\,\,1} \right]\);       
C. \(\left( {0;\,\,6} \right)\);        
D. \(\left( { - 1;\,\,7} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP