Câu hỏi:

02/01/2026 10 Lưu

Phương trình chính tắc của parabol \(\left( P \right)\) biết khoảng cách từ tiêu điểm \(F\) của parabol \(\left( P \right)\) đến đường thẳng \(d:x + y - 12 = 0\) bằng \(2\sqrt 2 \) là

A. \({y^2} = 32x\) và \({y^2} = 16x\);              

B. \({y^2} = 8x\);     

C. \({y^2} = 16x\);                                           
D. \({y^2} = 32x\) và \({y^2} = 64x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Gọi phương trình chính tắc của \(\left( P \right):{y^2} = 2px\,\,\left( {p > 0} \right)\).

Toạ độ tiêu điểm \(F\left( {\frac{p}{2};0} \right)\).

Ta có khoảng cách từ \(F\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \) nên

\(d\left( {F,\,d} \right) = \frac{{\left| {\frac{p}{2} - 12} \right|}}{{\sqrt 2 }} = 2\sqrt 2  \Leftrightarrow \left| {\frac{p}{2} - 12} \right| = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{p}{2} - 12 = 4\\\frac{p}{2} - 12 =  - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}p = 32\\p = 16\end{array} \right.\)

Vậy phương trình chính tắc của \(\left( P \right):{y^2} = 32x\) hoặc \({y^2} = 64x\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 0;                              
B. 1;                          
C. 2;                           
D. 3.

Lời giải

Đáp án đúng là: B

Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 4x}  = 2x - 2\] ta được

\( - {x^2} + 4x = 4{x^2} - 8x + 4\).

Sau khi thu gọn ta được \(5{x^2} - 12x + 4 = 0\). Từ đó tìm được \(x = 2\) hoặc \(x = \frac{2}{5}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có \(x = 2\) thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là \(x = 2\).  

Câu 2

A. \(\left( {0;\,\,4} \right)\);                              
B. \(\left( {0;\,\,2} \right)\);  
C. \(\left( {2;\,\,0} \right)\);                     
D. \(\left( {4;\,\,0} \right)\).

Lời giải

Đáp án đúng là: B

Ta có: \(C \in Oy \Rightarrow C\left( {0;\,\,c} \right)\), \(G \in Ox \Rightarrow G\left( {g;\,\,0} \right)\).

Vì \(G\) là trọng tâm của tam giác \(ABC\) nên ta có: \(\left\{ \begin{array}{l}g = \frac{{\left( { - 1} \right) + \left( { - 5} \right) + 0}}{3}\\0 = \frac{{1 + \left( { - 3} \right) + c}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}g =  - 2\\c = 2\end{array} \right.\).

Vậy \(C\left( {0;\,\,2} \right)\).

Câu 3

A. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\];         

B. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[{\left( {a{x^2} + bx + c} \right)^2} = {\left( {d{x^2} + ex + f} \right)^2}\];              

C. Mọi nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] đều là nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \];  

D. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập hợp các nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] thỏa mãn bất phương trình \(a{x^2} + bx + c \ge 0\) (hoặc \(d{x^2} + ex + f \ge 0\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 2;                              
B. 4;                          
C. 1;                           
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \left[ { - 1;4} \right]\);                         
B. \(S = \left( { - \infty ; - 1} \right)\);                                  
C.\(S = \left( {4; + \infty } \right)\);                  
D.\(S = \left( { - 1;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP