Câu hỏi:

17/01/2026 32 Lưu

Một hình bình hành có hai cạnh nằm trên hai đường thẳng \[x + 3y - 6 = 0\] và \[2x - 5y - 1 = 0\]. Tâm của hình bình hành là điểm \[I\left( {3;5} \right)\]. Viết phương trình hai cạnh còn lại.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\frac{1}{2} \ne \frac{3}{{ - 5}}\), do đó hai đường thẳng \[x + 3y - 6 = 0\] và \[2x - 5y - 1 = 0\] cắt nhau.

Giả sử hình bình hành \(ABCD\) có hai cạnh \[AB:x + 3y - 6 = 0\] và \[AD:2x - 5y - 1 = 0\].

Khi đó, tọa độ đỉnh \(A\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\2x - 5y - 1 = 0\end{array} \right. \Rightarrow A\left( {3;1} \right)\].

Vì tâm của hình bình hành là điểm \[I\left( {3;5} \right)\] nên \[I\] là trung điểm của \[AC\], do đó:

\[\left\{ \begin{array}{l}2{x_I} = {x_A} + {x_C}\\2{y_I} = {y_A} + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6 = 3 + {x_C}\\10 = 1 + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = 9\end{array} \right.\]\[ \Rightarrow C\left( {3;9} \right)\].

Vì \[DC\,\,{\rm{//}}\,\,AB\] nên phương trình \[DC:x + 3y + n = 0\] \(\left( {n \ne  - 6} \right)\).

\[C\left( {3;9} \right) \in DC \Rightarrow 3 + 27 + n = 0 \Rightarrow n =  - 30\] (t/m).

\[ \Rightarrow \] Phương trình \[DC:x + 3y - 30 = 0\].

Vì \[BC\,\,{\rm{//}}\,AD\] nên phương trình \[BC:2x - 5y + m = 0\,\,\,\left( {m \ne  - 1} \right)\].

\[C\left( {3;9} \right) \in BC \Rightarrow 6 - 45 + m = 0 \Rightarrow m = 39\] (t/m).

\[ \Rightarrow \] Phương trình \[BC:2x - 5y + 39 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{d_1}\] và \({d_2}\) song song với nhau;   

B. \[{d_1}\] và \({d_2}\) trùng nhau;                

C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;        

D. \[{d_1}\] và \({d_2}\) vuông góc với nhau.

Lời giải

Đáp án đúng là: C

Đường thẳng \({d_1}:2x + 3y + 15 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:x - 2y - 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1;\, - 2} \right)\).

Ta thấy \(\frac{2}{1} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 2.1 + 3.\left( { - 2} \right) =  - 4 \ne 0\).

Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.

Lời giải

Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).

* Với \(m + 2 > \frac{{4 - m}}{3} \Leftrightarrow 3m + 6 > 4 - m \Leftrightarrow m >  - \frac{1}{2}\) ta có

Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge  - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).

Kết hợp với điều kiện \(m >  - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán

* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m <  - \frac{1}{2}\) ta có

Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le  - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le  - 3\).

Kết hợp với điều kiện \(m <  - \frac{1}{2}\) ta có \(m \le  - 3\) thỏa mãn yêu cầu bài toán.

* Với \(m =  - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\)  nên \(m =  - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.

Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.

Câu 3

A. \[S = \left( { - \infty ;\,\, - \frac{1}{2}} \right] \cup \left[ {2;\,\, + \infty } \right)\];     

B. \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\);         

C. \(S = \left( { - \infty ;\,\, - 2} \right) \cup \left( {\frac{1}{2};\,\, + \infty } \right)\);      
D. \(S = \left( { - \frac{1}{2};\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {AB}  = \left( {1;\,\, - 2} \right)\);                    

B. \[\overrightarrow {AB}  = \left( {2;\,\, - 4} \right)\];                    

C. \(\overrightarrow {AB}  = \left( {4;\,\, - 2} \right)\);                     
D. \(\overrightarrow {AB}  = \left( { - 2;\,\,4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình tổng quát của đường thẳng đi qua điểm \(A\left( {2;\, - 1} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2;\, - 3} \right)\) là

A. \(2x - 3y + 7 = 0\);                                      

B. \(2x - 3y - 7 = 0\); 

C. \(2x - y - 7 = 0\);                                          

D. \(2x - y + 7 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right) > 0,\,\,\forall \,x \in \left( { - \infty \,;\,1} \right) \cup \,\,\left( {5\,;\, + \infty } \right)\);                                                       

B. \(f\left( x \right) < 0,\forall x \in \left( {1;\,\,5} \right)\);

C. \(f\left( x \right) < 0,\,\,\forall \,x \in \left( { - \infty \,;\,1} \right) \cup \,\,\left( {5\,;\, + \infty } \right)\);             
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP