Câu hỏi:

17/01/2026 51 Lưu

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(d:x - y + 1 = 0\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 4 = 0\) . Tìm tọa độ điểm \(M \in d\) sao cho từ \(M\) kẻ được hai tiếp tuyến \(MA,MB\) thỏa mãn khoảng cách từ \(N\left( {0;\frac{1}{2}} \right)\) đến đường thẳng\(AB\) bằng 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 4 = 0\) có tâm \(I\left( {1; - 2} \right)\).

Ta có điểm \(M\)thuộc \(d:x - y + 1 = 0\) nên \(M\left( {a;a + 1} \right)\).

Gọi \(K\) trung điểm của \(MI\)thì \(K\left( {\frac{{a + 1}}{2};\frac{{a - 1}}{2}} \right)\).

Vì \(\Delta MAI\) và \(\Delta MBI\) lần lượt vuông tại \(A\) và \(B\) (định nghĩa tiếp tuyến)  nên \(KA = KB = \frac{1}{2}MI\).

Đường tròn \(\left( {C'} \right)\) tâm \(K\), đường kính \(MI\) nên có phương trình

\({\left( {x - \frac{{a + 1}}{2}} \right)^2} + {\left( {y - \frac{{a - 1}}{2}} \right)^2} = \frac{{{a^2} + 2a + 5}}{2} \Leftrightarrow {x^2} + {y^2} - \left( {a + 1} \right)x - \left( {a - 1} \right)y - a - 2 = 0\).

Đường thẳng \(AB\)  là giao của hai đường tròn \(\left( C \right)\) và \(\left( {C'} \right)\) nên tọa độ điểm \(A,B\) thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}{x^2} + {y^2} - 2x + 4y - 4 = 0\\{x^2} + {y^2} - \left( {a + 1} \right)x - \left( {a - 1} \right)y - a - 2 = 0\end{array} \right. \Rightarrow \left( {1 - a} \right)x - \left( {a + 3} \right)y - a + 2 = 0\).

Suy ra đường thẳng\(AB\) có phương trình \(\left( {1 - a} \right)x - \left( {a + 3} \right)y - a + 2 = 0\).

Khoảng cách từ \(N\left( {0;\frac{1}{2}} \right)\)đến \(AB\) là \(d\left( {N,AB} \right) = \frac{{\left| {1 - 3a} \right|}}{{2\sqrt {{{\left( {1 - a} \right)}^2} + {{\left( {a + 3} \right)}^2}} }} = 1\).

\[ \Rightarrow 2\sqrt {2{a^2} + 4a + 10}  = \left| {1 - 3a} \right|\]

\( \Rightarrow 4\left( {2{a^2} + 4a + 10} \right) = 9{a^2} - 6a + 1\)

\( \Leftrightarrow {a^2} - 22a - 39 = 0 \Leftrightarrow a = 11 \pm 4\sqrt {10} \).

Thử lại ta thấy cả hai giá trị của \(a\) đều thỏa mãn.

Vậy \(M\left( {11 + 4\sqrt {10} ;12 + 4\sqrt {10} } \right)\) hoặc \(M\left( {11 - 4\sqrt {10} ;12 - 4\sqrt {10} } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{d_1}\] và \({d_2}\) song song với nhau;   

B. \[{d_1}\] và \({d_2}\) trùng nhau;                

C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;        

D. \[{d_1}\] và \({d_2}\) vuông góc với nhau.

Lời giải

Đáp án đúng là: C

Đường thẳng \({d_1}:2x + 3y + 15 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:x - 2y - 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1;\, - 2} \right)\).

Ta thấy \(\frac{2}{1} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 2.1 + 3.\left( { - 2} \right) =  - 4 \ne 0\).

Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.

Lời giải

Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).

* Với \(m + 2 > \frac{{4 - m}}{3} \Leftrightarrow 3m + 6 > 4 - m \Leftrightarrow m >  - \frac{1}{2}\) ta có

Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge  - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).

Kết hợp với điều kiện \(m >  - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán

* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m <  - \frac{1}{2}\) ta có

Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)

Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)

Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)

khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le  - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le  - 3\).

Kết hợp với điều kiện \(m <  - \frac{1}{2}\) ta có \(m \le  - 3\) thỏa mãn yêu cầu bài toán.

* Với \(m =  - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\)  nên \(m =  - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.

Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.

Câu 3

A. \[S = \left( { - \infty ;\,\, - \frac{1}{2}} \right] \cup \left[ {2;\,\, + \infty } \right)\];     

B. \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\);         

C. \(S = \left( { - \infty ;\,\, - 2} \right) \cup \left( {\frac{1}{2};\,\, + \infty } \right)\);      
D. \(S = \left( { - \frac{1}{2};\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {AB}  = \left( {1;\,\, - 2} \right)\);                    

B. \[\overrightarrow {AB}  = \left( {2;\,\, - 4} \right)\];                    

C. \(\overrightarrow {AB}  = \left( {4;\,\, - 2} \right)\);                     
D. \(\overrightarrow {AB}  = \left( { - 2;\,\,4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình tổng quát của đường thẳng đi qua điểm \(A\left( {2;\, - 1} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2;\, - 3} \right)\) là

A. \(2x - 3y + 7 = 0\);                                      

B. \(2x - 3y - 7 = 0\); 

C. \(2x - y - 7 = 0\);                                          

D. \(2x - y + 7 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right) > 0,\,\,\forall \,x \in \left( { - \infty \,;\,1} \right) \cup \,\,\left( {5\,;\, + \infty } \right)\);                                                       

B. \(f\left( x \right) < 0,\forall x \in \left( {1;\,\,5} \right)\);

C. \(f\left( x \right) < 0,\,\,\forall \,x \in \left( { - \infty \,;\,1} \right) \cup \,\,\left( {5\,;\, + \infty } \right)\);             
D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP