Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(d:x - y + 1 = 0\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 4 = 0\) . Tìm tọa độ điểm \(M \in d\) sao cho từ \(M\) kẻ được hai tiếp tuyến \(MA,MB\) thỏa mãn khoảng cách từ \(N\left( {0;\frac{1}{2}} \right)\) đến đường thẳng\(AB\) bằng 1.
Quảng cáo
Trả lời:
Đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y - 4 = 0\) có tâm \(I\left( {1; - 2} \right)\).
Ta có điểm \(M\)thuộc \(d:x - y + 1 = 0\) nên \(M\left( {a;a + 1} \right)\).
Gọi \(K\) trung điểm của \(MI\)thì \(K\left( {\frac{{a + 1}}{2};\frac{{a - 1}}{2}} \right)\).
Vì \(\Delta MAI\) và \(\Delta MBI\) lần lượt vuông tại \(A\) và \(B\) (định nghĩa tiếp tuyến) nên \(KA = KB = \frac{1}{2}MI\).
Đường tròn \(\left( {C'} \right)\) tâm \(K\), đường kính \(MI\) nên có phương trình
\({\left( {x - \frac{{a + 1}}{2}} \right)^2} + {\left( {y - \frac{{a - 1}}{2}} \right)^2} = \frac{{{a^2} + 2a + 5}}{2} \Leftrightarrow {x^2} + {y^2} - \left( {a + 1} \right)x - \left( {a - 1} \right)y - a - 2 = 0\).
Đường thẳng \(AB\) là giao của hai đường tròn \(\left( C \right)\) và \(\left( {C'} \right)\) nên tọa độ điểm \(A,B\) thỏa mãn hệ phương trình
\(\left\{ \begin{array}{l}{x^2} + {y^2} - 2x + 4y - 4 = 0\\{x^2} + {y^2} - \left( {a + 1} \right)x - \left( {a - 1} \right)y - a - 2 = 0\end{array} \right. \Rightarrow \left( {1 - a} \right)x - \left( {a + 3} \right)y - a + 2 = 0\).
Suy ra đường thẳng\(AB\) có phương trình \(\left( {1 - a} \right)x - \left( {a + 3} \right)y - a + 2 = 0\).
Khoảng cách từ \(N\left( {0;\frac{1}{2}} \right)\)đến \(AB\) là \(d\left( {N,AB} \right) = \frac{{\left| {1 - 3a} \right|}}{{2\sqrt {{{\left( {1 - a} \right)}^2} + {{\left( {a + 3} \right)}^2}} }} = 1\).
\[ \Rightarrow 2\sqrt {2{a^2} + 4a + 10} = \left| {1 - 3a} \right|\]
\( \Rightarrow 4\left( {2{a^2} + 4a + 10} \right) = 9{a^2} - 6a + 1\)
\( \Leftrightarrow {a^2} - 22a - 39 = 0 \Leftrightarrow a = 11 \pm 4\sqrt {10} \).
Thử lại ta thấy cả hai giá trị của \(a\) đều thỏa mãn.
Vậy \(M\left( {11 + 4\sqrt {10} ;12 + 4\sqrt {10} } \right)\) hoặc \(M\left( {11 - 4\sqrt {10} ;12 - 4\sqrt {10} } \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{d_1}\] và \({d_2}\) song song với nhau;
B. \[{d_1}\] và \({d_2}\) trùng nhau;
C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;
Lời giải
Đáp án đúng là: C
Đường thẳng \({d_1}:2x + 3y + 15 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;\,\,3} \right)\) và đường thẳng \({d_2}:x - 2y - 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\, - 2} \right)\).
Ta thấy \(\frac{2}{1} \ne \frac{3}{{ - 2}}\) và \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 2.1 + 3.\left( { - 2} \right) = - 4 \ne 0\).
Vậy \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau.
Lời giải
Ta có \(3{x^2} - 2\left( {m + 5} \right)x - {m^2} + 2m + 8 = 0 \Leftrightarrow x = m + 2\) hoặc \(x = \frac{{4 - m}}{3}\).
* Với \(m + 2 > \frac{{4 - m}}{3} \Leftrightarrow 3m + 6 > 4 - m \Leftrightarrow m > - \frac{1}{2}\) ta có
Bất phương trình (1)\( \Leftrightarrow \frac{{4 - m}}{3} \le x \le m + 2\)
Vậy tập nghiệm của bất phương trình (1) là \(\left[ {\frac{{4 - m}}{3};m + 2} \right]\)
Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)
khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {\frac{{4 - m}}{3};m + 2} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge \frac{{4 - m}}{3}}\\{1 \le m + 2}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 7}\\{m \ge - 1}\end{array}} \right. \Leftrightarrow m \ge 7\).
Kết hợp với điều kiện \(m > - \frac{1}{2}\) ta có \(m \ge 7\) thỏa mãn yêu cầu bài toán
* Với \(m + 2 < \frac{{4 - m}}{3} \Leftrightarrow m < - \frac{1}{2}\) ta có
Bất phương trình (1)\( \Leftrightarrow m + 2 \le x \le \frac{{4 - m}}{3}\)
Vậy tập nghiệm của bất phương trình (1) là \(\left[ {m + 2;\frac{{4 - m}}{3}} \right]\)
Suy ra mọi \[x \in \left[ { - 1;1} \right]\] đều là nghiệm của bất phương trình (1)
khi và chỉ khi \[\left[ { - 1;1} \right] \subset \left[ {m + 2;\frac{{4 - m}}{3}} \right] \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \ge m + 2}\\{1 \le \frac{{4 - m}}{3}}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le - 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow m \le - 3\).
Kết hợp với điều kiện \(m < - \frac{1}{2}\) ta có \(m \le - 3\) thỏa mãn yêu cầu bài toán.
* Với \(m = - \frac{1}{2}\) ta có bất phương trình (1)\( \Leftrightarrow x = \frac{3}{2}\) nên \(m = - \frac{1}{2}\) không thỏa mãn yêu cầu bài toán.
Vậy \(m \in ( - \infty ; - 3] \cup {\rm{[}}7; + \infty )\) là giá trị cần tìm.
Câu 3
A. \[S = \left( { - \infty ;\,\, - \frac{1}{2}} \right] \cup \left[ {2;\,\, + \infty } \right)\];
B. \(S = \left( { - 2;\,\,\frac{1}{2}} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(f\left( x \right) > 0,\,\,\forall \,x \in \left( { - \infty \,;\,1} \right) \cup \,\,\left( {5\,;\, + \infty } \right)\);
B. \(f\left( x \right) < 0,\forall x \in \left( {1;\,\,5} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.