Câu hỏi:

02/01/2026 43 Lưu

Tổng các bình phương các nghiệm của phương trình \[\sqrt { - {x^2} + 2x + 3}  = \sqrt {{x^2} - 4x + 3} \] bằng

A. 0;                          
B. 4;                              
C. Không tồn tại;        
D. 9.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 2x + 3}  = \sqrt {{x^2} - 4x + 3} \] ta được:

\( - {x^2} + 2x + 3 = {x^2} - 4x + 3\).

Thu gọn phương trình trên ta được: \(2{x^2} - 6x = 0\). Từ đó suy ra \(x = 0\) hoặc \(x = 3\).

Lần lượt thay các giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ {0 & ;\,\,3} \right\}\). Khi đó ta có: \({0^2} + {3^2} = 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_D}}}{3} = \frac{{3 + 2 + 1}}{3} = 2 = {x_G}\\\frac{{{y_A} + {y_B} + {y_D}}}{3} = \frac{{1 + 2 + \left( { - 6} \right)}}{3} =  - 1 = {y_G}\end{array} \right.\).

Vậy \(G\) là trọng tâm của tam giác \(ABD\).

Câu 2

A. 2;                          
B. 0;                              
C. 1;                           
D. 3.

Lời giải

Đáp án đúng là: B

Xét tam thức \(f\left( x \right) =  - 2{x^2} - 3x + 2\) có hai nghiệm là \({x_1} =  - 2\), \({x_2} = \frac{1}{2}\).

Mặt khác có hệ số \(a =  - 2 < 0\), do đó ta có bảng xét dấu sau:

\(x\)

\( - \infty \)                   \( - 2\)                      \(\frac{1}{2}\)                 \( + \infty \)

\(f\left( x \right)\)

            –             0            +           0           –

Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) =  - 2{x^2} - 3x + 2 > 0\)\( \Leftrightarrow x \in \left( { - 2;\,\,\frac{1}{2}} \right)\).

Do \(\frac{1}{2} < 1\) nên bất phương trình đã cho có không có nghiệm nguyên dương nào.

Câu 3

A. \(\overrightarrow a  = \overrightarrow c \);   

B. \(\overrightarrow a  = \overrightarrow b \);

C. \(\overrightarrow a \) và \(\overrightarrow c \) ngược hướng;      
D. \(\overrightarrow a \) và \(\overrightarrow c \) cùng hướng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x <  - 3\) hoặc \(x >  - 1\);                         

B. \(x <  - 1\) hoặc \(x > 3\);

C. \(x <  - 2\) hoặc \(x > 6\);                                   
D. \( - 1 < x < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP