Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\) và hai đường thẳng \({\Delta _1}:x - y = 0,{\Delta _2}:x - 7y = 0\). Xác định tọa độ tâm \(K\) đường tròn \(\left( {C'} \right)\) tiếp xúc với các đường thẳng \({\Delta _1},\,{\Delta _2}\) và tâm \(K\) thuộc đường tròn \(\left( C \right)\).
Quảng cáo
Trả lời:

Xét hệ phương trình \(\left\{ \begin{array}{l}x - y = 0\\x - 7y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\end{array} \right.\).
Do đó, \({\Delta _1} \cap {\Delta _2} = O\left( {0;0} \right)\). Gọi \(A,\,\,B\) lần lượt là hai tiếp điểm của \(\left( {C'} \right)\) với \({\Delta _1},{\Delta _2}.\)
Ta có tam giác \(OAB\) cân tại \(O\) và \(K\) thuộc đường phân giác của \(\widehat {AOB}\).
Mặt khác, ta chứng minh được phương trình đường phân giác của \(\widehat {AOB}\) là:
\(\frac{{x - y}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \pm \frac{{x - 7y}}{{\sqrt {{1^2} + {{\left( { - 7} \right)}^2}} }} \Leftrightarrow \left[ \begin{array}{l}2x + y = 0\\x - 2y = 0\end{array} \right.\) .
Vì \(K \in \left( C \right)\) nên tọa độ điểm \(K\) là nghiệm của các hệ phương trình
\(\left\{ \begin{array}{l}2x + y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\,\) (Vô nghiệm) và \(\left\{ \begin{array}{l}x - 2y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\, \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{5}\\y = \frac{4}{5}\end{array} \right.\).
Vậy \(K\left( {\frac{8}{5};\,\frac{4}{5}} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Tổng các bình phương các nghiệm của phương trình \[\sqrt { - {x^2} + 2x + 3} = \sqrt {{x^2} - 4x + 3} \] bằng
Lời giải
Đáp án đúng là: D
Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 2x + 3} = \sqrt {{x^2} - 4x + 3} \] ta được:
\( - {x^2} + 2x + 3 = {x^2} - 4x + 3\).
Thu gọn phương trình trên ta được: \(2{x^2} - 6x = 0\). Từ đó suy ra \(x = 0\) hoặc \(x = 3\).
Lần lượt thay các giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ {0 & ;\,\,3} \right\}\). Khi đó ta có: \({0^2} + {3^2} = 9\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_D}}}{3} = \frac{{3 + 2 + 1}}{3} = 2 = {x_G}\\\frac{{{y_A} + {y_B} + {y_D}}}{3} = \frac{{1 + 2 + \left( { - 6} \right)}}{3} = - 1 = {y_G}\end{array} \right.\).
Vậy \(G\) là trọng tâm của tam giác \(ABD\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\overrightarrow a = \overrightarrow c \);
B. \(\overrightarrow a = \overrightarrow b \);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.