a) Từ các số \(1,2,3,4,5,6,7,8,9\) có thể lập được bao nhiêu số tự nhiên có \(6\) chữ số khác nhau và tổng các chữ số ở hàng chục, hàng trăm, hàng nghìn bằng \(8\).
b) Cho \[n\] là số nguyên dương thỏa mãn \[C_n^1 + C_n^2 = 15\]. Tìm số hạng không chứa \[x\] trong khai triển \[{\left( {x + \frac{2}{{{x^4}}}} \right)^n}.\]
a) Từ các số \(1,2,3,4,5,6,7,8,9\) có thể lập được bao nhiêu số tự nhiên có \(6\) chữ số khác nhau và tổng các chữ số ở hàng chục, hàng trăm, hàng nghìn bằng \(8\).
b) Cho \[n\] là số nguyên dương thỏa mãn \[C_n^1 + C_n^2 = 15\]. Tìm số hạng không chứa \[x\] trong khai triển \[{\left( {x + \frac{2}{{{x^4}}}} \right)^n}.\]
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số thỏa yêu cầu bài toán thì \({a_3} + {a_4} + {a_5} = 8\).
Có hai bộ \(3\) số có tổng bằng \(8\) trong các số \(1;2;3;...;9\) là: \(\left\{ {1;2;5} \right\}\)và \(\left\{ {1;3;4} \right\}\)
Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) thì \({a_3},{a_4},{a_5}\) có \(3!\) cách chọn và \({a_1},{a_2},{a_6}\) có \(A_6^3\) cách chọn suy ra có \(3!A_6^3 = 720\) số thỏa mãn yêu cầu.
Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) tương tự ta cũng có \(720\) số thỏa yêu cầu.
Vậy có \(720 + 720 = 1400\) số thỏa yêu cầu.
b) Điều kiện: \[n \ge 2,n \in {\mathbb{N}^*}\]
\[C_n^1 + C_n^2 = 15 \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15 \Leftrightarrow {n^2} + n - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 5}\\{n = - 6}\end{array}} \right. \Rightarrow n = 5\]
Khi đó,
\[{\left( {x + \frac{2}{{{x^4}}}} \right)^5} = C_5^0{x^5}{\left( {\frac{2}{{{x^4}}}} \right)^0} + C_5^1{x^4}\left( {\frac{2}{{{x^4}}}} \right) + C_5^2{x^3}{\left( {\frac{2}{{{x^4}}}} \right)^2} + C_5^3{x^2}{\left( {\frac{2}{{{x^4}}}} \right)^3} + C_5^4x{\left( {\frac{2}{{{x^4}}}} \right)^4} + C_5^5{x^0}{\left( {\frac{2}{{{x^4}}}} \right)^5}\]\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\)
Suy hệ số của số hạng không chứa \[x\] trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^5}\) là \(10\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Gọi số cần tìm có dạng \[\overline {ab} \]
Vì \(a,b\) đều là số chẵn nên
\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))
\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))
Như vậy, ta có \[4.5 = 20\] số cần tìm.
Lời giải
Hướng dẫn giải
Do \(n\) là số lẻ nên ta đặt \(n = 2k + 1\left( {k \in \mathbb{N},k \ge 1} \right)\).
Số phần tử không gian mẫu là:\(n\left( \Omega \right) = C_{2k + 1}^3\).
Gọi \(A\) là biến cố: “\(3\) đỉnh được chọn tạo thành tam giác tù”
Giả sử tam giác \(ABC\) có góc \(\widehat A,\widehat B\) là góc nhọn và góc \(\widehat C\) tù
Chọn một đỉnh bất kì làm đỉnh \(A\) có \(2k + 1\) cách
Khi đó còn lại \(2k\) đỉnh, từ điểm được chọn ta chia làm \(2\), mỗi bên là \(k\) đỉnh
Để tạo thành tam giác tù thì \(2\) đỉnh còn lại phải được chọn từ \(k\) đỉnh cùng thuộc một phía so với điểm đã chọn do đó có \(C_k^2 + C_k^2\) cách chọn
Nhưng với cách tính như vậy số tam giác được lặp lại \(2\) lần nên
\(n\left( A \right) = \frac{{\left( {2k + 1} \right)\left( {C_k^2 + C_k^2} \right)}}{{2!}} = \left( {2k + 1} \right)C_k^2\)
Vậy \(P\left( A \right) = \frac{{\left( {2k + 1} \right)C_k^2}}{{C_{2k + 1}^3}} = \frac{{45}}{{62}}\).
\( \Leftrightarrow 62\frac{{k!}}{{2!\left( {k - 2} \right)!}}.\left( {2k + 1} \right) = 45\frac{{\left( {2k + 1} \right)!}}{{3!\left( {2k - 2} \right)!}}\)
\( \Leftrightarrow 62\frac{{k\left( {k - 1} \right)\left( {2k + 1} \right)}}{2} = 45\frac{{2k\left( {2k + 1} \right)\left( {2k - 1} \right)}}{6}\)
\( \Leftrightarrow 62{k^3} - 31{k^2} - 31k = 60{k^3} - 15k\)
\( \Leftrightarrow 2{k^3} - 31{k^2} - 16k = 0 \Leftrightarrow \left[ \begin{array}{l}k = 16\\k = - \frac{1}{2}\\k = 0\end{array} \right.\).
Kết hợp với điều kiện \(k = 16\) thoả mãn bài toán.
Vậy \(n = 33\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.