Câu hỏi:

05/01/2026 145 Lưu

Cho một đa giác đều \(n\) đỉnh (với \(n\) là số lẻ). Chọn ngẫu nhiên \(3\) đỉnh của đa giác đều đó. Gọi \(P\) là xác suất sao cho \(3\)  đỉnh đó tạo thành một tam giác tù. Biết \(P = \frac{{45}}{{62}}\). Tìm \(n\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Do \(n\) là số lẻ nên ta đặt \(n = 2k + 1\left( {k \in \mathbb{N},k \ge 1} \right)\).

Số phần tử không gian mẫu là:\(n\left( \Omega  \right) = C_{2k + 1}^3\).

Gọi \(A\) là biến cố: “\(3\) đỉnh được chọn tạo thành tam giác tù”

Giả sử tam giác \(ABC\) có góc \(\widehat A,\widehat B\) là góc  nhọn và  góc \(\widehat C\)  tù

Chọn một đỉnh bất kì làm đỉnh \(A\) có \(2k + 1\) cách

Khi đó còn lại \(2k\) đỉnh, từ điểm được chọn ta chia làm \(2\), mỗi bên là \(k\)  đỉnh

Để tạo thành tam giác tù thì \(2\) đỉnh còn lại phải được chọn từ \(k\) đỉnh cùng thuộc một phía so với điểm đã chọn do đó có \(C_k^2 + C_k^2\) cách chọn

Nhưng với cách tính như vậy số tam giác được lặp lại \(2\) lần nên

\(n\left( A \right) = \frac{{\left( {2k + 1} \right)\left( {C_k^2 + C_k^2} \right)}}{{2!}} = \left( {2k + 1} \right)C_k^2\)

Vậy \(P\left( A \right) = \frac{{\left( {2k + 1} \right)C_k^2}}{{C_{2k + 1}^3}} = \frac{{45}}{{62}}\).

\( \Leftrightarrow 62\frac{{k!}}{{2!\left( {k - 2} \right)!}}.\left( {2k + 1} \right) = 45\frac{{\left( {2k + 1} \right)!}}{{3!\left( {2k - 2} \right)!}}\)

\( \Leftrightarrow 62\frac{{k\left( {k - 1} \right)\left( {2k + 1} \right)}}{2} = 45\frac{{2k\left( {2k + 1} \right)\left( {2k - 1} \right)}}{6}\)

\( \Leftrightarrow 62{k^3} - 31{k^2} - 31k = 60{k^3} - 15k\)

\( \Leftrightarrow 2{k^3} - 31{k^2} - 16k = 0 \Leftrightarrow \left[ \begin{array}{l}k = 16\\k =  - \frac{1}{2}\\k = 0\end{array} \right.\).

Kết hợp với điều kiện \(k = 16\) thoả mãn bài toán.

Vậy \(n = 33\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y - 2 = 0}\\{x + 2y - 5 = 0}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\) suy ra \(A\left( {3;1} \right)\)

Gọi \(B\left( {b;\,b - 2} \right)\) và \(C\left( {5 - 2c;\;c} \right)\), \(G\) là trọng tâm tam giác \(ABC\) nên \(b,\;c\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{5 - 2c + b + 3 = 9}\\{c + b - 2 + 1 = 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b = 5}\\{c = 2}\end{array}} \right.\).

Vậy \[B(5;3);\,C(1;2)\]\[ \Rightarrow \overrightarrow {BC}  = \left( { - 4; - 1} \right)\]

Phương trình đường thẳng \(BC\) đi qua \(B\left( {1;2} \right)\) có vectơ pháp tuyến là \(\overrightarrow n \left( {1; - 4} \right)\)  có dạng \(BC:1\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow BC:x - 4y + 7 = 0\).

Vậy ta có \(m =  - 4;n = 7 \Rightarrow m + n = 3\).

Lời giải

Đáp án đúng là: C

Gọi số cần tìm có dạng \[\overline {ab} \]

Vì \(a,b\) đều là số chẵn nên

\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))

\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))

Như vậy, ta có \[4.5 = 20\] số cần tìm.

Câu 4

A. \(S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\);    
B. \(S = \mathbb{R}\); 
C. \[S = \left( {2; + \infty } \right)\];  
D. \(S = \left( { - \infty ; - 2} \right) \cup \left( { - 2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số nghịch biến trên khoảng \[\left( {0;3} \right)\];

B. Hàm số đồng biến trên khoảng \[\left( { - \infty ;1} \right)\];

C. Hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\];

D. Hàm số đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP