Câu hỏi:

05/01/2026 48 Lưu

II. PHẦN TỰ LUẬN

Cho nhị thức \({\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^n}\), trong đó số nguyên \(n\) thỏa mãn \(A_n^3 = 12n\). Tìm số hạng chứa \({x^5}\) trong khai triển.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Xét phương trình \(A_n^3 = 12n\) (n ≥ 3)

\( \Leftrightarrow \frac{{n!}}{{\left( {n - 3} \right)!}} = 12n\)

\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right) = 12n\)

\( \Leftrightarrow {n^2} - 3n - 10 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n =  - 2\end{array} \right.\)

Do đó chỉ có \(n = 5\) thỏa mãn điều kiện.

Khi đó \({\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5} = {\left( {2{x^2}} \right)^5} + 5.{\left( {2{x^2}} \right)^4}.\left( {\frac{1}{{{x^3}}}} \right) + 10.{\left( {2{x^2}} \right)^3}.{\left( {\frac{1}{{{x^3}}}} \right)^2} + 10.{\left( {2{x^2}} \right)^2}.{\left( {\frac{1}{{{x^3}}}} \right)^3}\)

\( + 5.\left( {2{x^2}} \right).{\left( {\frac{1}{{{x^3}}}} \right)^4} + {\left( {\frac{1}{{{x^3}}}} \right)^5}\)

\( = 32{x^{10}} + 80{x^5} + 80 + \frac{{40}}{{{x^5}}} + \frac{{10}}{{{x^{10}}}} + \frac{1}{{{x^{15}}}}\).

Vậy số hạng chứa \({x^5}\) trong khai triển là \(80{x^5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có sơ đồ sau:

Dãy ghế thứ nhất

1

2

3

4

Dãy ghế thứ hai

5

6

7

8

Ở ghế 1: có \(8\) cách chọn học sinh ngồi vào ghế

Ở ghế 5: có \(4\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 2: có \(6\) cách chọn học sinh ngồi vào ghế

Ở ghế 6: có \(3\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 3: có \(4\) cách chọn học sinh ngồi vào ghế

Ở ghế 7: có \(2\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 4: có \(2\) cách chọn học sinh ngồi vào ghế

Ở ghế 8: có \(1\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Vậy có: \(8.4.6.3.4.2.2.1 = 9\,\,216\) cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.

Câu 2

A. \(0 \le P\left( A \right)\) hoặc \(P\left( A \right) \ge 1\);

B. \(P\left( A \right) - P\left( {\overline A } \right) = 1\);

C. \(0 \le P\left( {\overline A } \right) \le 1\);  
D. \(P\left( A \right) = P\left( {\overline A } \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho biến cố \(A\) có biến cố đối \(\overline A \). Ta có: \(P\left( A \right) + P\left( {\overline A } \right) = 1\) và \(0 \le P\left( A \right),P\left( {\overline A } \right) \le 1\).

Do đó C đúng.

Câu 3

A. Trục \(Oy\);  
B. Trục \(Ox\);  
C. Đường thẳng \(y = x\);
D. Hàm số không có trục đối xứng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\left( {a + b} \right)^4} = C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} + C_4^3a.{b^3} + C_4^4.{b^4}\);
B. \({\left( {a + b} \right)^4} = C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\); 
C. \({\left( {a + b} \right)^4} = C_4^0{a^4} - C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} - C_4^3a.{b^3} + C_4^4.{b^4}\);  
D. \({\left( {a + b} \right)^4} =  - C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\vec a\] được gọi là vectơ chỉ phương của đường thẳng \(d\) nếu \(\vec a \ne \vec 0\) và giá của \[\vec a\] song song hoặc trùng với \(d\);  
B. \(\vec n\) được gọi là vectơ pháp tuyến của đường thẳng \(d\) nếu \(\vec n \ne \vec 0\) và giá của \(\vec n\) vuông góc với \(d\); 
C. Nếu \[\vec a\] là một vectơ chỉ phương của đường thẳng \(d\) thì \(k\vec a\,\,\,\left( {k \ne 0} \right)\) là một vectơ pháp tuyến của đường thẳng \(d\);
D. Cả A, B đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(n.k\);  
B. \(n\left( {n - 1} \right)\left( {n - 2} \right)...\left( {n - k + 1} \right)\); 
C.\(\frac{n}{k}\); 
D.\(\frac{k}{n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP