Câu hỏi:

05/01/2026 43 Lưu

Cho giá trị gần đúng của \(\frac{{23}}{7}\) là 3,28. Sai số tuyệt đối của số 3,28 là

A. 0,004;   
B. \(\frac{{0,04}}{7}\); 
C. 0,06;  
D. Đáp án khác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Sử dụng máy tính cầm tay ta tính được \(\frac{{23}}{7} = 3,\left( {285714} \right)\).

Sai số tuyệt đối của số gần đúng 3,28 là \({\Delta _a} = \left| {3,28 - 3,\left( {285714} \right)} \right| = \frac{1}{{175}} = \frac{{0,04}}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.

Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \(M(4;2) \in d \Leftrightarrow 4 + 2b + c = 0 \Rightarrow c =  - 4 - 2b.\)

\(d(A,d) = \frac{{\left| {1 + c} \right|}}{{\sqrt {1 + {b^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Leftrightarrow 10{(1 + c)^2} = 9(1 + {b^2})\)(1)

Thay \(c =  - 4 - 2b\) vào phương trình (1) ta có: \[31{b^2} + 120b + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}b =  - 3\\b =  - \frac{{27}}{{31}}\end{array} \right.\]

Vì \(b\) là số nguyên nên \(b =  - 3,c = 2 \Rightarrow b + c =  - 1\).

Câu 4

A. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  + 11 = 0\);
B. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\);
C. \(3x + 4y + 5\sqrt 2  - 11 = 0\), \(3x + 4y + 5\sqrt 2  + 11 = 0\);
D. \(3x + 4y - 5\sqrt 2  + 11 = 0\), \(3x + 4y - 5\sqrt 2  - 11 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 15;  
B. 4,5; 
C. 175;  
D. 10,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. một thí nghiệm hay một hành động biết trước kết quả trước khi thực hiện phép thử;

B. tập hợp các kết quả có thể xảy ra của phép thử;

C. một thí nghiệm hay một hành động không biết trước kết quả trước khi thực hiện phép thử;

D. một cách sắp xếp \(k\) phần tử nào đó vào \(n\) vị trí.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP