Câu hỏi:

05/01/2026 12 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {5; - 1} \right),\,\,B\left( { - 11;2} \right)\) và \(C\left( {3;9} \right)\). Trọng tâm tam giác \(ABC\) là

A. \(\left( {9;10} \right)\);                               
B. \(\left( {3;\frac{{10}}{3}} \right)\);                      
C. \(\left( {\frac{9}{2};5} \right)\);  
D. \(\left( { - 1;\frac{{10}}{3}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Gọi \(G\) là trọng tâm tam giác \(ABC\) nên ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{5 + \left( { - 11} \right) + 3}}{3} =  - 1\\{y_G} = \frac{{\left( { - 1} \right) + 2 + 9}}{3} = \frac{{10}}{3}\end{array} \right. \Rightarrow G\left( { - 1;\frac{{10}}{3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.

Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].

Câu 2

A. 15;  
B. 4,5; 
C. 175;  
D. 10,5.

Lời giải

Đáp án đúng là: A

Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

162; 164; 165; 170; 175; 175; 176; 183; 187.

Mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 175 hay \({Q_2} = 175\).

Nửa số liệu bên trái \({Q_2}\) là: 162; 164; 165; 170. Do đó, \({Q_1} = \frac{{164 + 165}}{2} = 164,5\).

Nửa số liệu bên phải \({Q_2}\)là: 175; 176; 183; 187. Do đó, \({Q_3} = \frac{{183 + 176}}{2} = 179,5\).

Vậy khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 179,5 - 164,5 = 15\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[m \ne 1\];  
B. \[\left\{ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\];  
C. \[m \ne 2\];   
D. \[\left[ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP