Cho tam giác \(ABC\) đều có \(A\left( {0;2\sqrt 3 } \right),\,\,B\left( { - 2;0} \right),\,\,C\left( {2;0} \right)\). Phương trình đường tròn ngoại tiếp tam giác \(ABC\) là
Cho tam giác \(ABC\) đều có \(A\left( {0;2\sqrt 3 } \right),\,\,B\left( { - 2;0} \right),\,\,C\left( {2;0} \right)\). Phương trình đường tròn ngoại tiếp tam giác \(ABC\) là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Vì tam giác \(ABC\) đều nên tâm của đường tròn ngoại tiếp tam giác \(ABC\) là trọng tâm tam giác \(ABC\).
Gọi \(G\) là trọng tâm tam giác \(ABC\), ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{0 - 2 + 2}}{3} = 0\\{y_G} = \frac{{2\sqrt 3 + 0 + 0}}{3} = \frac{{ - 2\sqrt 3 }}{3}\end{array} \right. \Rightarrow G\left( {0;\frac{{2\sqrt 3 }}{3}} \right)\).
\( \Rightarrow \overrightarrow {GC} \left( {2; - \frac{{2\sqrt 3 }}{3}} \right) \Rightarrow GC = \sqrt {{2^2} + {{\left( { - \frac{{2\sqrt 3 }}{3}} \right)}^2}} = \frac{{4\sqrt 3 }}{3} \Rightarrow R = \frac{{4\sqrt 3 }}{3}\).
Khi đó phương trình đường tròn ngoại tiếp tam giác \(ABC\) là:
\({x^2} + {\left( {y - \frac{{2\sqrt 3 }}{3}} \right)^2} = \frac{{16}}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.
Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].
Lời giải
Đáp án đúng là: A
Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
162; 164; 165; 170; 175; 175; 176; 183; 187.
Mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 175 hay \({Q_2} = 175\).
Nửa số liệu bên trái \({Q_2}\) là: 162; 164; 165; 170. Do đó, \({Q_1} = \frac{{164 + 165}}{2} = 164,5\).
Nửa số liệu bên phải \({Q_2}\)là: 175; 176; 183; 187. Do đó, \({Q_3} = \frac{{183 + 176}}{2} = 179,5\).
Vậy khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 179,5 - 164,5 = 15\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.