Câu hỏi:

05/01/2026 11 Lưu

Trong mặt phẳng \[Oxy\], phương trình nào sau đây là phương trình của đường tròn?

A. \({x^2} + 2{y^2} - 4x - 8y + 1 = 0\); 
B. \({x^2} + {y^2} - 4x + 6y - 12 = 0\);
C. \({x^2} + {y^2} - 2x - 8y + 20 = 0\);  
D. \(4{x^2} + {y^2} - 10x - 6y - 2 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Để là phương trình đường tròn thì điều kiện cần là hệ số của \({x^2}\) và \({y^2}\) phải bằng nhau nên loại được đáp án A và D.

Xét đáp án C: \({x^2} + {y^2} - 2x - 8y + 20 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + 3 = 0\) vô lý.

Xét đáp án B: \({x^2} + {y^2} - 4x + 6y - 12 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\) là phương trình đường tròn tâm \(I\left( {2; - 3} \right)\), bán kính \(R = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.

Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].

Câu 2

A. 15;  
B. 4,5; 
C. 175;  
D. 10,5.

Lời giải

Đáp án đúng là: A

Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

162; 164; 165; 170; 175; 175; 176; 183; 187.

Mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 175 hay \({Q_2} = 175\).

Nửa số liệu bên trái \({Q_2}\) là: 162; 164; 165; 170. Do đó, \({Q_1} = \frac{{164 + 165}}{2} = 164,5\).

Nửa số liệu bên phải \({Q_2}\)là: 175; 176; 183; 187. Do đó, \({Q_3} = \frac{{183 + 176}}{2} = 179,5\).

Vậy khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 179,5 - 164,5 = 15\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[m \ne 1\];  
B. \[\left\{ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\];  
C. \[m \ne 2\];   
D. \[\left[ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP