Hypebol có tỉ số \(\frac{c}{a} = \sqrt 5 \) và đi qua điểm \(M\left( {1;\,0} \right)\) có phương trình chính tắc là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là : B
Gọi phương trình chính tắc của Hypebol cần tìm là: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\,\,\left( {a,b > 0} \right)\)
Ta có điểm \(M\left( {1;\,0} \right)\) thuộc Hypebol nên thay \(x = 1\) và \(y = 0\) vào phương trình trên ta được: \(\frac{{{1^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\,\, \Leftrightarrow \frac{1}{{{a^2}}} = 1 \Leftrightarrow {a^2} = 1 \Leftrightarrow a = 1\) (vì \(a > 0\)).
Mặt khác ta có \(\frac{c}{a} = \sqrt 5 \Rightarrow c = \sqrt 5 .a = \sqrt 5 \).
Do đó \(b = \sqrt {{c^2} - {a^2}} = \sqrt {5 - 1} = 2\).
Vậy phương trình chính tắc của Hypebol là \(\left( H \right):\frac{{{x^2}}}{1} - \frac{{{y^2}}}{4} = 1\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \(M(4;2) \in d \Leftrightarrow 4 + 2b + c = 0 \Rightarrow c = - 4 - 2b.\)
\(d(A,d) = \frac{{\left| {1 + c} \right|}}{{\sqrt {1 + {b^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Leftrightarrow 10{(1 + c)^2} = 9(1 + {b^2})\)(1)
Thay \(c = - 4 - 2b\) vào phương trình (1) ta có: \[31{b^2} + 120b + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}b = - 3\\b = - \frac{{27}}{{31}}\end{array} \right.\]
Vì \(b\) là số nguyên nên \(b = - 3,c = 2 \Rightarrow b + c = - 1\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
\(\left( C \right):{x^2} + {y^2} - 2x - 4y + 3 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 2\).
Do đó đường tròn có tâm \(I = \left( {1;\,2} \right)\) và bán kính \(R = \sqrt 2 \).
Do \(d\) song song với đường thẳng \(\Delta \) nên \(d\) có phương trình là \(3x + 4y + k = 0\), \(\left( {k \ne 1} \right)\).
Ta có:
\(d\left( {I;\,d} \right) = R \Leftrightarrow \frac{{\left| {11 + k} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \sqrt 2 \Leftrightarrow \left| {11 + k} \right| = 5\sqrt 2 \Leftrightarrow \left[ \begin{array}{l}11 + k = 5\sqrt 2 \\11 + k = - 5\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}k = 5\sqrt 2 - 11\\k = - 5\sqrt 2 - 11\end{array} \right.\).
Vậy có hai phương trình tiếp tuyến cần tìm là \(3x + 4y + 5\sqrt 2 - 11 = 0\), \(3x + 4y - 5\sqrt 2 - 11 = 0\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.