Câu hỏi:

05/01/2026 13 Lưu

a) Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có tâm \(I\left( { - 2;3} \right)\) và đi qua điểm \(A\left( {6;0} \right)\). Viết phương trình đường tròn \(\left( C \right)\).

b) Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1; - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\)  có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có: \(\overrightarrow {IA} \left( {8;\,\, - 3} \right) \Rightarrow IA = \sqrt {{8^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {73} \).

Suy ra bán kính đường tròn \(\left( C \right)\) là \(R = \sqrt {73} \).

Khi đó phương trình đường tròn \(\left( C \right)\) cần tìm là: \({\left( {x - 8} \right)^2} + {\left( {y + 3} \right)^2} = 73\).

b)

a) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I (- 2;3) và đi qua điểm A (6;0). Viết phương trình đường tròn (C). (ảnh 1)

Từ điểm \(I\) kẻ \(IH\) vuông góc với đường thẳng \(d\left( {H \in d} \right)\).

Khi đó \(H\) là trung điểm của \(AB\).

Khoảng cách từ điểm \(I\) đến đường thẳng \(d\) là: \(d\left( {I;d} \right) = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\).

Diện tích tam giác \(IAB\) bằng \(4\) nên độ dài cạnh \(AB\) bằng: \(2.4:2 = 4\).

\( \Rightarrow AH = HB = \frac{1}{2}AB = 2\).

Xét tam giác \(AIH\), vuông tại \(H\) có: \(IA = \sqrt {I{H^2} + A{H^2}}  = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \).

Khi đó phương trình đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(IA = 2\sqrt 2 \) là:

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.

Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].

Câu 2

A. 15;  
B. 4,5; 
C. 175;  
D. 10,5.

Lời giải

Đáp án đúng là: A

Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

162; 164; 165; 170; 175; 175; 176; 183; 187.

Mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 175 hay \({Q_2} = 175\).

Nửa số liệu bên trái \({Q_2}\) là: 162; 164; 165; 170. Do đó, \({Q_1} = \frac{{164 + 165}}{2} = 164,5\).

Nửa số liệu bên phải \({Q_2}\)là: 175; 176; 183; 187. Do đó, \({Q_3} = \frac{{183 + 176}}{2} = 179,5\).

Vậy khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 179,5 - 164,5 = 15\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[m \ne 1\];  
B. \[\left\{ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\];  
C. \[m \ne 2\];   
D. \[\left[ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP