a) Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có tâm \(I\left( { - 2;3} \right)\) và đi qua điểm \(A\left( {6;0} \right)\). Viết phương trình đường tròn \(\left( C \right)\).
b) Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1; - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
a) Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có tâm \(I\left( { - 2;3} \right)\) và đi qua điểm \(A\left( {6;0} \right)\). Viết phương trình đường tròn \(\left( C \right)\).
b) Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1; - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có: \(\overrightarrow {IA} \left( {8;\,\, - 3} \right) \Rightarrow IA = \sqrt {{8^2} + {{\left( { - 3} \right)}^2}} = \sqrt {73} \).
Suy ra bán kính đường tròn \(\left( C \right)\) là \(R = \sqrt {73} \).
Khi đó phương trình đường tròn \(\left( C \right)\) cần tìm là: \({\left( {x - 8} \right)^2} + {\left( {y + 3} \right)^2} = 73\).
b)
Từ điểm \(I\) kẻ \(IH\) vuông góc với đường thẳng \(d\left( {H \in d} \right)\).
Khi đó \(H\) là trung điểm của \(AB\).
Khoảng cách từ điểm \(I\) đến đường thẳng \(d\) là: \(d\left( {I;d} \right) = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\).
Diện tích tam giác \(IAB\) bằng \(4\) nên độ dài cạnh \(AB\) bằng: \(2.4:2 = 4\).
\( \Rightarrow AH = HB = \frac{1}{2}AB = 2\).
Xét tam giác \(AIH\), vuông tại \(H\) có: \(IA = \sqrt {I{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Khi đó phương trình đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(IA = 2\sqrt 2 \) là:
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Giá trị lớn nhất của mẫu số liệu là 187, giá trị nhỏ nhất của mẫu số liệu là 162.
Vậy khoảng biến thiên của mẫu số liệu là \[R = 187--162 = 25\].
Lời giải
Đáp án đúng là: A
Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
162; 164; 165; 170; 175; 175; 176; 183; 187.
Mẫu số liệu gồm 9 số liệu nên trung vị là số ở vị trí thứ 5 và là số 175 hay \({Q_2} = 175\).
Nửa số liệu bên trái \({Q_2}\) là: 162; 164; 165; 170. Do đó, \({Q_1} = \frac{{164 + 165}}{2} = 164,5\).
Nửa số liệu bên phải \({Q_2}\)là: 175; 176; 183; 187. Do đó, \({Q_3} = \frac{{183 + 176}}{2} = 179,5\).
Vậy khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 179,5 - 164,5 = 15\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.