Một mẫu số liệu có độ lệch chuẩn bằng 2,5. Phương sai của mẫu số liệu đó là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Phương sai của mẫu số liệu đã cho là \({s^2} = {\left( {2,5} \right)^2} = 6,25\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Đường tròn tâm \(I\) và tiếp xúc với đường thẳng \(\left( d \right)\) có bán kính
\(R = d\left( {I,d} \right) = \frac{{\left| {3.1 + 4.1 - 2} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 1\)
Vậy đường tròn có phương trình là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\).
Câu 19.
Lời giải
Hướng dẫn giải
+) Gọi \[AH\] và \[AD\] lần lượt là các đường cao và trung tuyến kẻ từ \[A\] của tam giác \[ABC\].
+) Tọa độ \[A\] là nghiệm của hệ \[\left\{ \begin{array}{l}7x - 2y - 3 = 0\\6x - y - 4 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right. \Rightarrow A\left( {1;2} \right)\].
+) \[M\] là trung điểm của \[AB\] nên \(\left\{ \begin{array}{l}{x_B} = 2{x_M} - {x_A} = 3\\{y_B} = 2{y_M} - {y_A} = - 2\end{array} \right. \Rightarrow B\left( {3; - 2} \right)\).
+) Đường thẳng \[BC\] đi qua \(B\left( {3; - 2} \right)\) và vuông góc với đường thẳng \[AH\]:\[6x - y - 4 = 0\] nên có phương trình \[1\left( {x--3} \right) + 6\left( {y + 2} \right) = 0 \Leftrightarrow x + 6y + 9 = 0\].
+) \[D\] là giao điểm của \[BC\] và \[AD\] nên tọa độ \[D\] là nghiệm của hệ
\[\left\{ \begin{array}{l}7x - 2y - 3 = 0\\x + 6y + 9 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = - \frac{3}{2}\end{array} \right.\,\, \Rightarrow D\left( {0;\,\, - \frac{3}{2}} \right)\]
Mà \(D\) là trung điểm của \(BC\) suy ra \[C\left( { - 3; - 1} \right)\].
+) Đường thẳng \[AC\] đi qua \[A\left( {1;2} \right)\] và có một vectơ chỉ phương là vectơ \(\overrightarrow {AC} = \left( { - 4; - 3} \right)\) vậy đường thẳng \(AC\)có một vectơ chỉ phương là \(\overrightarrow {AC} \left( { - 4; - 3} \right)\) suy ra đường thẳng \(AC\) có một vectơ pháp tuyến là \(\overrightarrow n \left( {3; - 4} \right)\) phương trình đường thẳng \(AC\) là \[3\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 5 = 0\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.