Câu hỏi:

07/01/2026 26 Lưu

Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món chính trong năm món chính, một loại quả tráng miệng trong năm loại quả tráng miệng và một loại nước uống trong ba loại nước uống. Số cách chọn thực đơn là

A. \(25\);   
B. \(75\);
C. \(100\);  
D. \(15\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Việc chọn thực đơn gồm ba công đoạn:

Công đoạn 1: Chọn một món chính, có \(5\) cách chọn.

Công đoạn 2: Chọn một loại quả tráng miệng, có \(5\) cách chọn.

Công đoạn 3: chọn một loại nước uống, có \(3\) cách chọn.

Theo quy tắc nhân, ta có tất cả \(5.5.3 = 75\) cách chọn thực đơn.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có đường thẳng \(d\) đi qua điểm \(A\left( {3;1} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u \left( { - 5;4} \right)\) suy ra đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow n \left( {4;5} \right)\). Vậy phương trình tổng quát của đường thẳng \(d\) là: \(4\left( {x - 3} \right) + 5\left( {y - 1} \right) = 0 \Leftrightarrow 4x + 5y - 17 = 0\).

Lời giải

Hướng dẫn giải

Số phần tử của không gian mẫu \(n\left( \Omega  \right) = 10!\).

Giả sử các ghế được đánh số từ \(1\)  đến \(10\).

Để có cách xếp sao cho giữa \(2\) bạn nữ gần nhau có đúng \(2\) bạn nam thì các bạn nữ phải ngồi ở các ghế đánh số \(1;4;7;10\). Số cách xếp chỗ ngồi loại này là: \(6!.4!\) cách.

Ta tính số cách sắp xếp chỗ ngồi sao cho Huyền và Quang ngồi cạnh nhau

Nếu Huyền ngồi ở ghế \(1\) hoặc \(10\)  thì có \(1\) cách xếp chỗ ngồi cho Quang. Nếu Huyền ngồi ở ghế \(4\)  hoặc \(7\) thì có \(2\)  cách xếp chỗ ngồi cho Quang.

Do đó, số cách xếp chỗ ngồi cho Quang và Huyền ngồi liền nhau là \(2 + 2.2 = 6\)

Suy ra, số cách xếp chỗ ngồi cho \(10\) người sao cho Quang và Huyền ngồi liền nhau là\(6.3!.5!\) cách

Gọi \(A\) là biến cố: “ Giữa \(2\) bạn nữ gần nhau có đúng \(2\) bạn nam, đồng thời Quang không ngồi cạnh Huyền”.

Số phần tử của biến cố \(A\) là: \(n\left( A \right) = 4!.6! - 6.5!.3! = 12\,960\).

Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{12960}}{{10!}} = \frac{1}{{280}}\).

Câu 3

A. \(10.10\);   
B. \(10!\);  
C. \(C_{10}^1\);  
D. \(A_{10}^1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}\];  

B. \[\frac{7}{{12}}\];   

C. \[\frac{1}{6}\];  

D. \[\frac{1}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 5\);    
B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 25\);
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\);  
D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(4x + 3y + 4 = 0\);  
B. \(4x + 3y - 4 = 0\);       
C. \(4x - 3y + 4 = 0\);  
D. \(4x - 3y - 4 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP