Một tháp triển lãm có mặt cắt hình hypebol có phương trình \(\frac{{{x^2}}}{{{{18}^2}}} - \frac{{{y^2}}}{{{{36}^2}}} = 1\). Cho biết chiều cao của tháp là 100 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol bằng khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp (đơn vị m) (làm tròn kết quả đến hàng đơn vị).
Một tháp triển lãm có mặt cắt hình hypebol có phương trình \(\frac{{{x^2}}}{{{{18}^2}}} - \frac{{{y^2}}}{{{{36}^2}}} = 1\). Cho biết chiều cao của tháp là 100 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol bằng khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp (đơn vị m) (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Đáp án:
Do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng \(r\).
Do điểm \(M\left( {r;50} \right)\) nằm trên hypebol nên thay tọa độ của điểm \(M\) vào phương trình của hypebol ta có \(\frac{{{r^2}}}{{{{18}^2}}} - \frac{{{{50}^2}}}{{{{36}^2}}} = 1 \Rightarrow r = 18\sqrt {1 + \frac{{{{50}^2}}}{{{{36}^2}}}} \approx 31\) m.
Vậy bán kính của nóc và đáy của tháp bằng 31 m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Tọa độ của \(\overrightarrow {BC} \) là \(\left( {0; - 4} \right)\).
b) Tọa độ trung điểm của \(AB\) là \(\left( {\frac{3}{2};1} \right)\).
c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).
Lời giải
a) \(\overrightarrow {BC} = \left( {0; - 4} \right)\).
b) Tọa độ trung điểm của \(AB\) là \(\left\{ \begin{array}{l}x = \frac{{0 + 3}}{2} = \frac{3}{2}\\y = \frac{{1 + 1}}{2} = 1\end{array} \right.\).
c) Có \(\overrightarrow {AB} = \left( {3;0} \right),\overrightarrow {AC} = \left( {3; - 4} \right)\).
Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 3 + 0 \cdot \left( { - 4} \right) = 9\).
d)

Theo tính chất tia phân giác, \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{5}\).
Mà \(\overrightarrow {DB} \) và \(\overrightarrow {DC} \) là hai vectơ ngược hướng nên \(\overrightarrow {DB} = - \frac{3}{5}\overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}3 - a = - \frac{3}{5}\left( {3 - a} \right)\\1 - b = - \frac{3}{5}\left( { - 3 - b} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\end{array} \right.\).
Suy ra \(a + b = 2,5\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Có \(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).
Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).
Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).
\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).
b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\) là \(H\left( { - 1; - 4} \right)\).
c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.