Câu hỏi:

07/01/2026 7 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:x - 2y - 2 = 0\) và ba điểm \(A\left( {3;4} \right),B\left( { - 1;2} \right),C\left( {0;1} \right)\). Biết rằng tồn tại duy nhất điểm \(M\left( {a;b} \right)\) thuộc đường thẳng \(d\) để biểu thức \(\left| {\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Tính giá trị của biểu thức \(P = a + 2b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

4

Giả sử \(I\left( {m;n} \right)\) thỏa mãn \(\overrightarrow {IA} - 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \).

Ta có \(\overrightarrow {IA} = \left( {3 - m;4 - n} \right);\overrightarrow {IB} = \left( { - 1 - m;2 - n} \right);\overrightarrow {IC} = \left( { - m;1 - n} \right)\).

Khi đó ta có \(\left\{ \begin{array}{l}3 - m - 2\left( { - 1 - m} \right) + 3\left( { - m} \right) = 0\\4 - n - 2\left( {2 - n} \right) + 3\left( {1 - n} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = \frac{5}{2}\\n = \frac{3}{2}\end{array} \right.\)\( \Rightarrow I\left( {\frac{5}{2};\frac{3}{2}} \right)\).

Ta có \(\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} = \overrightarrow {MI} + \overrightarrow {IA} - 2\overrightarrow {MI} - 2\overrightarrow {IB} + 3\overrightarrow {MI} + 3\overrightarrow {IC} = 2\overrightarrow {MI} \).

Để \(\left| {\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất thì \(\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(M\) là hình chiếu của \(I\) trên đường thẳng \(d\).

Gọi \(\Delta \) là đường thẳng đi qua \(I\) và vuông góc với đường thẳng \(d\) có phương trình là

\(2\left( {x - \frac{5}{2}} \right) + \left( {y - \frac{3}{2}} \right) = 0\)\( \Leftrightarrow 2x + y - \frac{{13}}{2} = 0\).

Tọa độ điểm \(M\) là nghiệm của hệ \(\left\{ \begin{array}{l}2x + y - \frac{{13}}{2} = 0\\x - 2y - 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \frac{1}{2}\end{array} \right.\)\( \Rightarrow M\left( {3;\frac{1}{2}} \right)\).

\(P = a + 2b = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

a) \(\overrightarrow {BC}  = \left( {0; - 4} \right)\).

b) Tọa độ trung điểm của \(AB\)\(\left\{ \begin{array}{l}x = \frac{{0 + 3}}{2} = \frac{3}{2}\\y = \frac{{1 + 1}}{2} = 1\end{array} \right.\).

c) Có \(\overrightarrow {AB} = \left( {3;0} \right),\overrightarrow {AC} = \left( {3; - 4} \right)\).

Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 3 + 0 \cdot \left( { - 4} \right) = 9\).

d)

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) biết A{ 0;1} (ảnh 1)

Theo tính chất tia phân giác, \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{5}\).

\(\overrightarrow {DB} \)\(\overrightarrow {DC} \) là hai vectơ ngược hướng nên \(\overrightarrow {DB} = - \frac{3}{5}\overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}3 - a = - \frac{3}{5}\left( {3 - a} \right)\\1 - b = - \frac{3}{5}\left( { - 3 - b} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\end{array} \right.\).

Suy ra \(a + b = 2,5\).

Đáp án: a) Đúng;    b) Đúng;     c) Sai;     d) Đúng.

Lời giải

\(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).

\(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).

Câu 5

a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).

Đúng
Sai

b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\)\(H\left( { - 1; - 4} \right)\).

Đúng
Sai

c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).

Đúng
Sai
d) Tọa độ điểm \(M\) thỏa mãn \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \)\(\left( { - 7;0} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = 1 - 4t\\y = 2 + 3t\end{array} \right.\).             
B. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\end{array} \right.\).                      
C. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 4 + t\end{array} \right.\).                     
D. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 - 4t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP