Phương trình đường chuẩn của parabol \(\left( P \right):{y^2} = 14x\) là
Câu hỏi trong đề: Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án !!
Quảng cáo
Trả lời:
Phương trình đường chuẩn của parabol \(\left( P \right):{y^2} = 14x\) là \(x = - \frac{p}{2} = - \frac{7}{2}\). Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 2; - 3} \right)\). Có \(\overrightarrow n = \left( {3; - 2} \right)\) vuông góc với \(\overrightarrow {AB} = \left( { - 2; - 3} \right)\) nên \(\overrightarrow n = \left( {3; - 2} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).
Đường thẳng \(AB\) đi qua điểm \(A\left( {1;2} \right)\) và nhận \(\overrightarrow n = \left( {3; - 2} \right)\) làm vectơ pháp tuyến có phương trình là
\(3\left( {x - 1} \right) - 2\left( {y - 2} \right) = 0\)\( \Leftrightarrow 3x - 2y + 1 = 0\). Chọn D.
Câu 2
Lời giải
\(\overrightarrow {AB} = \left( {4; - 4} \right)\)\( \Rightarrow AB = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = 4\sqrt 2 \). Chọn C.
Câu 3
a) \(\overrightarrow {AB} = \left( {2;3} \right)\).
b) \(AC = 2\sqrt 6 \).
c) Tọa độ điểm \(C\) là \(C\left( {0; - 5} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.