Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) với \(A\left( {1;0} \right),\overrightarrow {AB} = 2\overrightarrow i + 3\overrightarrow j ,\overrightarrow {AC} = \left( { - 1;5} \right)\).
Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) với \(A\left( {1;0} \right),\overrightarrow {AB} = 2\overrightarrow i + 3\overrightarrow j ,\overrightarrow {AC} = \left( { - 1;5} \right)\).
a) \(\overrightarrow {AB} = \left( {2;3} \right)\).
b) \(AC = 2\sqrt 6 \).
c) Tọa độ điểm \(C\) là \(C\left( {0; - 5} \right)\).
Câu hỏi trong đề: Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án !!
Quảng cáo
Trả lời:
a) \(\overrightarrow {AB} = 2\overrightarrow i + 3\overrightarrow j \)\( \Rightarrow \overrightarrow {AB} = \left( {2;3} \right)\).
b) \(\overrightarrow {AC} = \sqrt {{{\left( { - 1} \right)}^2} + {5^2}} = \sqrt {26} \).
c) Gọi \(C\left( {x;y} \right)\). Ta có \(\overrightarrow {AC} = \left( {x - 1;y} \right)\).
Theo đề \(\overrightarrow {AC} = \left( { - 1;5} \right)\).
Do đó \(\left\{ \begin{array}{l}x - 1 = - 1\\y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 5\end{array} \right.\) \( \Rightarrow C\left( {0;5} \right)\).
d) Ta có \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \).
Do đó \(\overrightarrow {BC} = \left( { - 3;2} \right)\).
Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {BC} = 2 \cdot \left( { - 3} \right) + 3 \cdot 2 = 0\) nên tam giác \(ABC\) vuông tại \(B\).
Ta có \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{2^2} + {3^2}} = \sqrt {13} \); \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} \).
Diện tích tam giác \(ABC\) là \({S_{ABC}} = \frac{1}{2}AB \cdot BC = \frac{{13}}{2} = 6,5\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 2; - 3} \right)\). Có \(\overrightarrow n = \left( {3; - 2} \right)\) vuông góc với \(\overrightarrow {AB} = \left( { - 2; - 3} \right)\) nên \(\overrightarrow n = \left( {3; - 2} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).
Đường thẳng \(AB\) đi qua điểm \(A\left( {1;2} \right)\) và nhận \(\overrightarrow n = \left( {3; - 2} \right)\) làm vectơ pháp tuyến có phương trình là
\(3\left( {x - 1} \right) - 2\left( {y - 2} \right) = 0\)\( \Leftrightarrow 3x - 2y + 1 = 0\). Chọn D.
Câu 2
Lời giải
\(\overrightarrow {AB} = \left( {4; - 4} \right)\)\( \Rightarrow AB = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = 4\sqrt 2 \). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.