Câu hỏi:

07/01/2026 10 Lưu

Cho đường tròn \(\left( C \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = 25\) tiếp xúc với đường thẳng \(d:3x + 4y + 1 = 0\) tại \(A\left( {1; - 1} \right)\). Tính \(\frac{a}{b}\) (biết \(a < 0\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,4

Đường tròn \(\left( C \right)\) có tâm \(I\left( {a;b} \right)\)\(R = 5\).

Ta có \(\overrightarrow {IA} = \left( {1 - a; - 1 - b} \right)\).

Đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;4} \right)\).

Vì đường tròn \(\left( C \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = 25\) tiếp xúc với đường thẳng \(d:3x + 4y + 1 = 0\) tại \(A\left( {1; - 1} \right)\) nên ta có hệ \(\left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\{\left( {1 - a} \right)^2} + {\left( { - 1 - b} \right)^2} = 25\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\9{k^2} + 16{k^2} = 25\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\{k^2} = 1\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\k = \pm 1\end{array} \right.\].

Với \(k = 1\) thì \(\left\{ \begin{array}{l}a = - 2\\b = - 5\end{array} \right.\); Với \(k = - 1\) thì \(\left\{ \begin{array}{l}a = 4\\b = 3\end{array} \right.\).

\(a < 0\) nên \(\left\{ \begin{array}{l}a = - 2\\b = - 5\end{array} \right.\). Suy ra \(\frac{a}{b} = 0,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2x + 3y + 8 = 0\).       
B. \(2x + 3y - 8 = 0\).       
C. \(3x - 2y - 1 = 0\).         
D. \(3x - 2y + 1 = 0\).

Lời giải

Ta có \(\overrightarrow {AB} = \left( { - 2; - 3} \right)\). Có \(\overrightarrow n = \left( {3; - 2} \right)\) vuông góc với \(\overrightarrow {AB} = \left( { - 2; - 3} \right)\) nên \(\overrightarrow n = \left( {3; - 2} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Đường thẳng \(AB\) đi qua điểm \(A\left( {1;2} \right)\) và nhận \(\overrightarrow n  = \left( {3; - 2} \right)\) làm vectơ pháp tuyến có phương trình là

\(3\left( {x - 1} \right) - 2\left( {y - 2} \right) = 0\)\( \Leftrightarrow 3x - 2y + 1 = 0\). Chọn D.

Câu 2

A. \({x^2} + {y^2} - 6x + 4y + 13 = 0\).                    

B. \({x^2} + {y^2} + 2x - 4y + 9 = 0\).                                     

C. \(2{x^2} + 2{y^2} - 6x - 4y - 1 = 0\).                     
D. \(2{x^2} + {y^2} + 2x - 3y + 9 = 0\).

Lời giải

Xét phương trình \(2{x^2} + 2{y^2} - 6x - 4y - 1 = 0\)\( \Leftrightarrow {x^2} + {y^2} - 3x - 2y - \frac{1}{2} = 0\).

Phương trình này có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2};b = 1;c =  - \frac{1}{2}\).

Có \({a^2} + {b^2} - c = \frac{{15}}{4} > 0\) nên phương trình này là phương trình đường tròn. Chọn C.

Câu 3

A. \(\left( {4; - 4} \right)\).                                        
B. \(\left( {1;1} \right)\).  
C. \[\left( {2;0} \right)\].           
D. \(\left( { - 4;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(M\left( { - 3;4} \right)\).                                     
B. \(M\left( { - 3; - 4} \right)\).    
C. \[M\left( {3;4} \right)\].                                         
D. \(M\left( {3; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = - \frac{7}{2}\).   
B. \(y = \frac{7}{2}\).       
C. \(x = - \frac{7}{2}\).   
D. \(x = \frac{7}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP