Câu hỏi:

07/01/2026 37 Lưu

Trong các phương trình sau, phương trình nào là phương trình đường tròn?

A. \({x^2} + {y^2} - 6x + 4y + 13 = 0\).                    

B. \({x^2} + {y^2} + 2x - 4y + 9 = 0\).                                     

C. \(2{x^2} + 2{y^2} - 6x - 4y - 1 = 0\).                     
D. \(2{x^2} + {y^2} + 2x - 3y + 9 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét phương trình \(2{x^2} + 2{y^2} - 6x - 4y - 1 = 0\)\( \Leftrightarrow {x^2} + {y^2} - 3x - 2y - \frac{1}{2} = 0\).

Phương trình này có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2};b = 1;c =  - \frac{1}{2}\).

Có \({a^2} + {b^2} - c = \frac{{15}}{4} > 0\) nên phương trình này là phương trình đường tròn. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì một tín hiệu âm thanh phát đi từ một vị trí \(I\left( {x;y} \right)\) và được ba thiết bị ghi tín hiệu tại ba vị trí \(O\left( {0;0} \right),A\left( {1;0} \right),B\left( {1;3} \right)\) nhận được cùng một thời điểm nên \(IO = IA = IB\).

Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l}{x^2} + {y^2} = {\left( {x - 1} \right)^2} + {y^2}\\{\left( {x - 1} \right)^2} + {y^2} = {\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2x + 1 = 0\\ - 6y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\\y = \frac{3}{2}\end{array} \right.\).

Vậy \(x + y = \frac{1}{2} + \frac{3}{2} = 2\).

Lời giải

Trong mặt phẳng \(Oxy\), cho hình thang \(ABCD\) có đáy lớn \(CD = 3AB\) (ảnh 1)

Gọi \[\overrightarrow n = \left( {a;b} \right)\] với \({a^2} + {b^2} \ne 0\) là vectơ pháp tuyến của đường thẳng \(CD\).

Khi đó đường thẳng \(CD\) đi qua điểm \(C\left( { - 3; - 3} \right)\) và có vectơ pháp tuyến \[\overrightarrow n = \left( {a;b} \right)\] có phương trình là

\(a\left( {x + 3} \right) + b\left( {y + 3} \right) = 0 \Rightarrow ax + by + 3a + 3b = 0\).

\(CD = 3AB\) nên \(CD = 3\sqrt {10} \). Khi đó \(d\left( {A,CD} \right) = \frac{{2{S_{BCD}}}}{{CD}} = \frac{{36}}{{3\sqrt {10} }} = \frac{{12}}{{\sqrt {10} }}\).

Suy ra \(d\left( {M,CD} \right) = \frac{1}{2}d\left( {A,CD} \right) = \frac{6}{{\sqrt {10} }}\)\( \Leftrightarrow \frac{{\left| {3a + b + 3a + 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{6}{{\sqrt {10} }}\)\( \Leftrightarrow \frac{{\left| {3a + 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{3}{{\sqrt {10} }}\)

\( \Leftrightarrow 10{\left( {3a + 2b} \right)^2} = 9\left( {{a^2} + {b^2}} \right)\)\( \Leftrightarrow 81{a^2} + 120ab + 31{b^2} = 0\)\( \Leftrightarrow a = - \frac{1}{3}b\) hoặc \(a = - \frac{{31}}{{27}}b\).

TH1: \(a = - \frac{1}{3}b\).

Chọn \(b = - 3\) thì \(a = 1\). Khi đó phương trình đường thẳng \(CD:x - 3y - 6 = 0 \Rightarrow D\left( {3d + 6;d} \right)\).

Ta có \(C{D^2} = 90\)\( \Leftrightarrow {\left( {3d + 9} \right)^2} + {\left( {d + 3} \right)^2} = 90 \Leftrightarrow {\left( {d + 3} \right)^2} = 9\)\( \Leftrightarrow d = 0\) hoặc \(d = - 6\).

Suy ra \(D\left( {6;0} \right)\) (thỏa mãn) hay \(D\left( { - 12; - 6} \right)\) (loại).

Vậy \(D\left( {6;0} \right) \Rightarrow A\left( {0;2} \right)\).

Ta có \(\overrightarrow {AB} = \frac{1}{3}\overrightarrow {DC} = \left( { - 3; - 1} \right)\)\( \Rightarrow B\left( { - 3;1} \right)\).

TH2: \(a = - \frac{{31}}{{27}}b\).

Chọn \(b = - 27 \Rightarrow a = 31\). Khi đó \(CD:31x - 27y + 12 = 0\)\( \Rightarrow D\left( {d;\frac{{31d + 12}}{{27}}} \right)\).

Suy ra \(C{D^2} = {\left( {d + 3} \right)^2} + {\left( {\frac{{31d + 93}}{{27}}} \right)^2} = 90\)\( \Rightarrow {\left( {d + 3} \right)^2} = \frac{{6561}}{{169}}\) (loại).

Vậy \(B\left( { - 3;1} \right)\)\( \Rightarrow 3a - b = - 10\).

Câu 3

A. \(\sqrt 2 \).                   
B. \(4\).                              
C. \[4\sqrt 2 \].                 
D. \(2\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2x + 3y + 8 = 0\).       
B. \(2x + 3y - 8 = 0\).       
C. \(3x - 2y - 1 = 0\).         
D. \(3x - 2y + 1 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(\overrightarrow {AB} = \left( {2;3} \right)\).

Đúng
Sai

b) \(AC = 2\sqrt 6 \).

Đúng
Sai

c) Tọa độ điểm \(C\)\(C\left( {0; - 5} \right)\).

Đúng
Sai
d) Diện tích tam giác \(ABC\)\(6,5\) (đơn vị diện tích).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {4; - 4} \right)\).                                        
B. \(\left( {1;1} \right)\).  
C. \[\left( {2;0} \right)\].           
D. \(\left( { - 4;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(M\left( { - 3;4} \right)\).                                     
B. \(M\left( { - 3; - 4} \right)\).    
C. \[M\left( {3;4} \right)\].                                         
D. \(M\left( {3; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP