Câu hỏi:

18/01/2026 46 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 25\). Điểm \(A\left( {6;2} \right)\) thuộc đường tròn, đường thẳng \(\Delta :3x + 4y - 26 = 0\).

a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).

Đúng
Sai

b) Đường tròn \(\left( C \right)\) có bán kính \(R = 5\).

Đúng
Sai

c) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {4; - 3} \right)\).

Đúng
Sai
d) Phương trình của đường thẳng \(\Delta \) là phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).

b) Đường tròn \(\left( C \right)\) có bán kính \(R = 5\).

c) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;4} \right)\).

d) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) nhận \(\overrightarrow {IA}  = \left( {3;4} \right)\) làm vectơ pháp tuyến có phương trình là

\(3\left( {x - 6} \right) + 4\left( {y - 2} \right) = 0\)\( \Leftrightarrow 3x + 4y - 26 = 0\).

Đáp án: a) Đúng;      b) Đúng;     c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\left\{ \begin{array}{l}x = 3 + 2\cos t\\y = 4 + 2\sin t\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x - 3 = 2\cos t\\y - 4 = 2\sin t\end{array} \right.\)\( \Rightarrow {\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 4\).

Vậy \(a = 4\).

Trả lời: 4.

Lời giải

Gọi \(I\) là giao điểm của \(AC\) và \(BD\). Hạ \(IH \bot AB\).

Suy ra \(I,R = IH\) là tâm và bán kính đường tròn nội tiếp hình vuông \(ABCD\).

\(AC\) là đường thẳng qua \(A\) và vuông góc với \(BD\) có phương trình là \(4x - 3y - 6 = 0\).

Tọa độ điểm \(I\) là nghiệm của hệ \(\left\{ \begin{array}{l}3x + 4y - 7 = 0\\4x - 3y - 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{5}\\y = \frac{2}{5}\end{array} \right.\)\( \Rightarrow I\left( {\frac{9}{5};\frac{2}{5}} \right)\).

Ta có \(AC = 2d\left( {A,BD} \right) = 2 \cdot \frac{{\left| {3 \cdot 3 + 4 \cdot 2 - 7} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 4\). Suy ra \(AB = 2\sqrt 2  \Rightarrow AH = \sqrt 2 \).

Xét \(\Delta AIH\) có \(IH = \sqrt {A{I^2} - A{H^2}}  = \sqrt {{2^2} - {{\left( {\sqrt 2 } \right)}^2}}  = \sqrt 2 \).

Vậy đường tròn nội tiếp hình vuông \(ABCD\) có phương trình là \({\left( {x - \frac{9}{5}} \right)^2} + {\left( {y - \frac{2}{5}} \right)^2} = 2\).

Suy ra \(a = \frac{9}{5};b = \frac{2}{5};{R^2} = 2\). Vậy \(25ab{R^2} = 36\).

Trả lời: 36.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({\left( {x - 2} \right)^2} + {y^2} = 5\). 

B. \({\left( {x - 4} \right)^2} + {y^2} = 10\).    

C. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = 3\). 

D. \({\left( {x + 4} \right)^2} + {y^2} = 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3;2} \right)\) và bán kính \(R = \sqrt {22} \).

Đúng
Sai

b) Đường thẳng \(\Delta \) đi qua \(B\) cắt đường tròn \(\left( C \right)\) theo một dây cung có độ dài lớn nhất. Biết phương trình \(\Delta :ax - y + c = 0\) thì \(a + c =  - 4\).

Đúng
Sai

c) Hai điểm \(A,B\) đều nằm ngoài đường tròn.

Đúng
Sai
d) Biết \(M\) là điểm thay đổi trên \(\left( C \right)\). Gọi \({P_{\min }}\) là giá trị nhỏ nhất của biểu thức \(P = MA + 2MB\). Khi đó \({P_{\min }} < 4\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(R = 3\).                      

B. \(R = \frac{{26}}{5}\). 

C. \(R = \frac{{18}}{5}\).             

D. \(R = \frac{6}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP