Câu hỏi:

18/01/2026 43 Lưu

Trong hệ tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 50\) và điểm \(A\left( { - 2; - 1} \right)\).

a) Đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

Đúng
Sai

b) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) có phương trình \(x + 7y + 9 = 0\).

Đúng
Sai

c) Điểm \(A\) thuộc đường tròn \(\left( C \right)\).

Đúng
Sai
d) Có hai tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường tròn \(\left( C \right)\) có tâm \(I\left( {5; - 2} \right),R = 5\sqrt 2 \).

a) Ta có \(d\left( {I,\Delta } \right) = \frac{{\left| {5 - \left( { - 2} \right) + 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{10}}{{\sqrt 2 }} = 5\sqrt 2  = R\).

Do đó đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

b) Ta có \(\overrightarrow {IA}  = \left( { - 7;1} \right)\).

Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\)  nhận \(\overrightarrow {IA}  = \left( { - 7;1} \right)\) làm vectơ pháp tuyến có phương trình là

\( - 7\left( {x + 2} \right) + \left( {y + 1} \right) = 0\) hay \(7x - y + 13 = 0\).

c) Thay tọa độ điểm \(A\) vào phương trình đường tròn ta thấy thỏa mãn.

Do đó điểm \(A\) thuộc đường tròn \(\left( C \right)\).

d) Tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\) có dạng \(d':x + y + c = 0,c \ne 7\)

Lại có \(d\left( {I,d'} \right) = R\)\( \Leftrightarrow \frac{{\left| {5 - 2 + c} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 5\sqrt 2 \)\( \Leftrightarrow \left| {3 + c} \right| = 10\)\( \Leftrightarrow \left[ \begin{array}{l}3 + c = 10\\3 + c =  - 10\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 7\\c =  - 13\end{array} \right.\).

Vì \(c \ne 7\) nên \(c =  - 13\).

Vậy có 1 tiếp tuyến là \(d':x + y - 13 = 0\).

Đáp án: a) Đúng;     b) Sai;   c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).          
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

 

     

Lời giải

Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).

Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c =  - 5\).

Vậy \(d:x + 2y - 5 = 0\). Chọn D.

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 1} \right)\) và \(R = 5\).

Vì tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) song song với đường thẳng \(\Delta \) có dạng \(3x - 4y + c = 0,c \ne  - 35\).

Lại có \(d\left( {I,d} \right) = R\)\( \Leftrightarrow \frac{{\left| {3 \cdot 2 - 4 \cdot \left( { - 1} \right) + c} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| {10 + c} \right| = 25\)\( \Leftrightarrow \left[ \begin{array}{l}10 + c = 25\\10 + c =  - 25\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\).

Vì \(c \ne  - 35\) nên \(c = 15\). Do đó \(d:3x - 4y + 15 = 0\).

Suy ra \(b =  - 4;c = 15\). Vậy \(b + c = 11\).

Trả lời: 11.

Câu 3

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Đường thẳng \(d\) cắt các trục tọa độ tạo thành một tam giác vuông cân.

Đúng
Sai

b) Đường tròn tâm \(A\) và tiếp xúc với đường thẳng \(d\) có bán kính \(R = \sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(AB\) cắt đường thẳng \(d\).

Đúng
Sai
d) Gọi \(M\left( {a;b} \right)\) là một điểm thuộc đường thẳng \(d\) thỏa mãn \(MA + MB\) đạt giá trị nhỏ nhất. Khi đó \(a + b = 2.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(135^\circ \).               
B. \(90^\circ \).                 
C. \(45^\circ \).                 
D. \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP