Câu hỏi:

18/01/2026 37 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có hai tiêu điểm là \({F_1},{F_2}\).

a) Tiêu cự của \(\left( E \right)\) là 8.

Đúng
Sai

b) Điểm \(F\left( { - 5;0} \right)\) trùng với một tiêu điểm của \(\left( E \right)\).

Đúng
Sai

c) Điểm \(K\left( {3;0} \right)\) thuộc \(\left( E \right)\).

Đúng
Sai
d) Biết rằng hypebol \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) và đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\). Điểm \(M\) là một điểm bất kì nằm trên \(\left( H \right)\) thì \(\left| {M{F_1} - M{F_2}} \right| = 2\sqrt 3 \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \({a^2} = 25;{b^2} = 9 \Rightarrow {c^2} = {a^2} - {b^2} = 25 - 9 = 16 \Rightarrow c = 4\).

Tiêu cự là \(2c = 8\).

b) Tiêu điểm \({F_1}\left( { - 4;0} \right),{F_2}\left( {4;0} \right)\).

c) Thay tọa độ điểm \(K\left( {3;0} \right)\) vào phương trình \(\left( E \right)\) ta thấy không thỏa mãn.

Do đó \(K\left( {3;0} \right)\) không thuộc \(\left( E \right)\).

d) Có \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) nên \({A^2} + {B^2} = 16\).

Lại có \(\left( H \right)\) đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\) nên \(\frac{{15}}{{{A^2}}} - \frac{1}{{{B^2}}} = 1 \Rightarrow 15{B^2} - {A^2} = {A^2}{B^2}\)\( \Rightarrow 240 - 16{A^2} = {A^2}\left( {16 - {A^2}} \right)\)\[ \Rightarrow {A^4} - 32{A^2} + 240 = 0 \Rightarrow \left[ \begin{array}{l}{A^2} = 12\left( {TM} \right)\\{A^2} = 20\left( {KTM} \right)\end{array} \right.\].

Với \({A^2} = 12 \Rightarrow A = 2\sqrt 3 \).

Suy ra \(\left| {M{F_1} - M{F_2}} \right| = 4\sqrt 3 \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).          
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

 

     

Lời giải

Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).

Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c =  - 5\).

Vậy \(d:x + 2y - 5 = 0\). Chọn D.

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 1} \right)\) và \(R = 5\).

Vì tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) song song với đường thẳng \(\Delta \) có dạng \(3x - 4y + c = 0,c \ne  - 35\).

Lại có \(d\left( {I,d} \right) = R\)\( \Leftrightarrow \frac{{\left| {3 \cdot 2 - 4 \cdot \left( { - 1} \right) + c} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| {10 + c} \right| = 25\)\( \Leftrightarrow \left[ \begin{array}{l}10 + c = 25\\10 + c =  - 25\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\).

Vì \(c \ne  - 35\) nên \(c = 15\). Do đó \(d:3x - 4y + 15 = 0\).

Suy ra \(b =  - 4;c = 15\). Vậy \(b + c = 11\).

Trả lời: 11.

Câu 3

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Đường thẳng \(d\) cắt các trục tọa độ tạo thành một tam giác vuông cân.

Đúng
Sai

b) Đường tròn tâm \(A\) và tiếp xúc với đường thẳng \(d\) có bán kính \(R = \sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(AB\) cắt đường thẳng \(d\).

Đúng
Sai
d) Gọi \(M\left( {a;b} \right)\) là một điểm thuộc đường thẳng \(d\) thỏa mãn \(MA + MB\) đạt giá trị nhỏ nhất. Khi đó \(a + b = 2.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(135^\circ \).               
B. \(90^\circ \).                 
C. \(45^\circ \).                 
D. \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP