Câu hỏi:

09/01/2026 13 Lưu

Trong một hộp kín đựng \(10\)tấm thẻ được đánh số tự nhiên từ \(1\) đến 10, không có \(2\) thẻ nào được đánh số giống nhau. Lấy ngẫu nhiên một tấm thẻ từ trong hộp đã cho. Tính xác suất của biến cố A: “Lấy được thẻ ghi số chẵn”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Không gian mẫu của phép thử là: \(\Omega  = \left\{ {1;2;3;4;5;6;7;8;9;10} \right\}\) gồm 10 phần tử. suy ra \(n\left( \Omega  \right) = 10\)

Lấy ngẫu nhiên một tấm thẻ từ trong hộp nên các kết quả có thể là đồng khả năng.

Gọi biến cố A: “Lấy được thẻ ghi số chẵn”.

Có 5 kết quả thuận lợi cho biến cố A là: \(2;4;6;8;10\).

Vậy xác suất của biến cố A là:\(P(A) = \)\(\)\(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{5}{{10}} = \frac{1}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tiền bác Vĩnh gửi là \({\rm{x}}\) (triệu đồng), \(0 < {\rm{x}} < 900\).

Số tiền bác Phúc gửi là \(900 - {\rm{x}}\) (triệu đồng)

Bác Vĩnh gửi tiết kiệm với lãi suất \(7\)%/năm, tức là số tiền lãi là: \(0,07{\rm{x}}\) (triệu đồng)

Bác Phúc gửi tiết kiệm với lãi suất \(6\)%/năm, tức là số tiền lãi là: \(0,06(900 - {\rm{x)}}\) (triệu đồng)

Vì tổng số tiền lãi mà hai bác nhận được là 60 triệu đồng nên ta có phương trình:

\(0,07{\rm{x}} + 0,06(900 - {\rm{x) = }}60\)

\(0,01x = 6\)

\(x = 600\)(TM).

Vậy số tiền bác Vĩnh gửi là \(600\)triệu đồng, bác Phúc gửi là \(300\)triệu đồng.

Lời giải

Media VietJack

a) Xét \(\Delta {\rm{OCB}}\)vuông tại \(O\) nên \(\Delta {\rm{OCB}}\) nội tiếp đường tròn đường kính \({\rm{CB}}\)

Xét \({\rm{\Delta HCB}}\)vuông tại \(H\) nên \(\Delta H{\rm{CB}}\) nội tiếp đường tròn đường kính \({\rm{CB}}\)

Do đó tứ giác \({\rm{OBHC}}\)nội tiếp đường tròn đường kính \({\rm{CB}}\).

b)

theo chứng minh phần a ta có tứ giác \({\rm{OBHC}}\)nội tiếp đường tròn đường kính \({\rm{CB}}\)

suy ra \(\widehat {CHO} = \widehat {CBA} = 45^\circ \) (cùng chắn cung \(OC\))

Nên \(\widehat {OHB} = \widehat {CHB} - \widehat {CHO} = 90^\circ  - 45^\circ  = 45^\circ \)

Do đó \({\rm{HO}}\) là tia phân giác của \(\widehat {CHB}\) .

Media VietJack

Xét \(\left( O \right)\) có \(\widehat {ACB} = 90^\circ \) góc nội tiếp chắn nửa đường tròn.

Xét \(\Delta CBD\) vuông tại \(C\), có đường cao \(AH\) nên \(C{H^2} = HB.HD\) hay \(\frac{{HC}}{{HB}} = \frac{{HD}}{{HC}}\)

Mặt khác \({\rm{HO}}\) là tia phân giác của \(\widehat {CHB}\)  nên \(\frac{{HC}}{{HB}} = \frac{{CE}}{{BE}}\)

Do đó  \(\frac{{HD}}{{HC}} = \frac{{CE}}{{BE}}\) hay \({\rm{CE}}{\rm{.CH = BE}}{\rm{.HD}}\).

c)                                                                  Media VietJack

Vì \(CD\)là đường kính của đường tròn ngoại tiếp \(\Delta {\rm{CHD}}\)

\({\rm{CE}} \bot {\rm{CD}}\) suy ra \({\rm{CE}}\) là tiếp tuyến của đường tròn ngoại tiếp \(\Delta {\rm{CHD}}\)

Gọi \({\rm{CF}}\) là đường kính của \(\left( {\rm{O}} \right)\)

Ta có \(\widehat {{\rm{CHD}}} = \widehat {{\rm{CKF}}} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Do đó \({\rm{F}}{\rm{,}}\;{\rm{K}}{\rm{,}}\;{\rm{D}}\) thẳng hàng

Mặt khác \(\widehat {{\rm{CBF}}} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

Suy ra \(CD\;{\rm{//}}\;BF\)

Theo cmpa ta có \(\frac{{{\rm{CE}}}}{{{\rm{BE}}}}{\rm{ = }}\frac{{{\rm{HD}}}}{{{\rm{CH}}}}\)

Do đó \(\Delta {\rm{CHD}}\) đồng dạng với \(\Delta {\rm{BCD}}\) (g.g)

Nên \(\frac{{{\rm{HD}}}}{{{\rm{CH}}}} = \frac{{{\rm{CD}}}}{{{\rm{BC}}}}{\rm{ = }}\frac{{{\rm{CD}}}}{{{\rm{BF}}}}\)

Suy ra \(\frac{{{\rm{CE}}}}{{{\rm{BE}}}}{\rm{ = }}\frac{{{\rm{CD}}}}{{{\rm{BF}}}}\)

Xét hai tam giác \(\Delta {\rm{DCE}}\) và \(\Delta {\rm{BFE}}\)

\(\widehat {{\rm{DCE}}}{\rm{ = }}\widehat {{\rm{FBE}}} = 90^\circ \)

\(\widehat {{\rm{CDE}}}{\rm{ = }}\widehat {{\rm{BFE}}}\) (hai góc so lê trong)

Do đó \(\Delta {\rm{DCE}}\) đồng dạng với \(\Delta {\rm{BFE}}\) (g.g)

Từ đó \(\widehat {{\rm{CED}}}{\rm{ = }}\widehat {{\rm{BEF}}}\)suy ra \(\widehat {{\rm{CEF}}}{\rm{ + }}\widehat {{\rm{CED}}}{\rm{ = }}\widehat {{\rm{CEF}}}{\rm{ + }}\widehat {{\rm{BEF}}} = 180^\circ \)

Hay \({\rm{D}}{\rm{,}}\;{\rm{E}}{\rm{,}}\;{\rm{F}}\) thẳng hàng

Do đó \({\rm{D}}{\rm{,}}\;{\rm{E}}{\rm{,}}\;{\rm{K}}\) thẳng hàng

Xét tam giác \({\rm{CED}}\) vuông tại \({\rm{C}}\)có \({\rm{CK}}\) là đường trung tuyến ứng với cạnh huyền\({\rm{DE}}\).

Gọi \({\rm{T}}\) là trung điểm của \({\rm{DE}}\) thì \({\rm{CT}} = \frac{1}{2}{\rm{DE}}\)

Do đó \({\rm{CK}} \le {\rm{CD}} = \frac{1}{2}{\rm{DE}}\) hay \(2.\;{\rm{CD}} \le {\rm{DE}}\)

Dấu “=” xảy ra khi tam giác \({\rm{CED}}\) vuông cân tại \({\rm{C}}\)

Suy ra \(\widehat {{\rm{ECK}}} = 45^\circ \) hay \(\widehat {{\rm{BOK}}} = 90^\circ \) do đó \({\rm{K}} \equiv {\rm{C}}\) (không xảy ra)

Vậy \({\rm{DE}} > 2.\;{\rm{CK}}\)

Câu 3

A.\[x \le  - 2025\].      

B.\[x = 2025\]. 
C. \[x \ne 2025\]. 
D. \[x > 2025\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[2x - 3y = 1\].                             

B. \[3x - y = 1\].           
C. \[x + y = 5\].               
D. \[x - 2y = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 1;1} \right)\).     
B. \(\left( {1;1} \right)\).          
C. \(\left( {1; - 1} \right)\).                    
 D. \(\left( {1;2} \right)\)        

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP