Câu hỏi:

13/01/2026 104 Lưu

Trong đợt ôn thi cuối học kỳ I, thống kê thời gian tự học mỗi ngày của \(40\) học sinh lớp \(9A\) ta thu được bảng kết quả như sau:

Thời gian (phút)

\(\left[ {0;\;20} \right)\)

\(\left[ {20;\;40} \right)\)

\(\left[ {40;\;60} \right)\)

\(\left[ {60;\;80} \right)\)

\(\left[ {80;\;100} \right)\)

\(\left[ {100;\;120} \right)\)

Số học sinh

\(3\)

\(5\)

\(12\)

\(10\)

\(6\)

\(4\)

            a) Hỏi lớp \(9A\) có bao nhiêu học sinh đã dành thời gian tự học mỗi ngày từ \(40\) phút đến dưới \(120\) phút?

            b) Tính tần số tương đối của nhóm \(\left[ {60;\;80} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Lớp \(9A\) có bao nhiêu học sinh đã dành thời gian tự học mỗi ngày từ \(40\) phút đến dưới \(120\) phút là:

\(12 + 10 + 6 + 4 = 32\)

 

b) Tính tần số tương đối của nhóm \(\left[ {60;\;80} \right)\).

 

Tần số tương đối của nhóm \(\left[ {60;\;80} \right)\) là: \(f = \frac{{10}}{{40}} \cdot 100\% \).

 

\(f = 25\% \)

 

Bạn Hải viết ngẫu nhiên một số trong tập hợp \(\left\{ {1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9;\;10;\;11;\;12} \right\}\). Tính xác suất để bạn Hải viết được một số không chia hết cho \(5\).

Số phần tử của không gian mẫu là: \(12\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phương trình \(2{x^2} - 10x + 3 = 0\) có \(\Delta ' = 25 - 6 = 19 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},\;{x_2}\).

Theo định lý Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = \frac{3}{2}\end{array} \right.\). Suy ra phương trình có hai nghiệm dương.

Ta có:

\(\sqrt {24{x_1} - 5} = \sqrt {2\left( {10{x_1} - 3} \right) + 4{x_1} + 1} = \sqrt {4x_1^2 + 4{x_1} + 1} \)

\( = \sqrt {{{\left( {2{x_1} + 1} \right)}^2}} = \left| {2{x_1} + 1} \right| = 2{x_1} + 1\)

Suy ra

\(\sqrt {24{x_1} - 5} + 2{x_2} + 2025 = 2{x_1} + 1 + 2{x_2} + 2026\)

\( = 2\left( {{x_1} + {x_2}} \right) + 2027 = 2037\)

Ta có:

\(25 - 2{x_1} - 8{x_2} = 25 - \left[ {5\left( {{x_1} + {x_2}} \right) - 3\left( {{x_1} - {x_2}} \right)} \right] = 25 - \left( {25 - 3\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}} } \right)\)

\( = 3\sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}.{x_2}} = 3\sqrt {25 - 6} = 3\sqrt {19} \)

Vậy \(T = \frac{{2037}}{{3\sqrt {19} }} = \frac{{679\sqrt {19} }}{{19}}\)

Lời giải

 

a)\(\widehat {AHC} = 90^\circ \) nên điểm \(H\) thuộc đường tròn đường kính \(AC\).

 

\(\widehat {AEC} = 90^\circ \) nên điểm \(E\) thuộc đường tròn đường kính \(AC\).

 

Do đó tứ giác \(AHEC\) nội tiếp đường tròn đường kính \(AC\).

 

Gọi \(I\) là trung điểm của \(BC\). Chứng minh \(\widehat {CIE} = \widehat {COE}\) và tam giác \(HIE\) cân tại \(I\).

* Chứng minh \(\widehat {CIE} = \widehat {COE}\)

Tam giác \(OBC\) cân tại \(O\) \(\left( {OB = OC = R} \right)\), có \(OI\) là đường trung tuyến (\(I\) là trung điểm của \(BC\)) nên \(OI\) cũng là đường cao hay \(OI \bot BC\), syu ra \(\widehat {OIC} = 90^\circ \) do đó điểm \(I\) thuộc đường tròn đường kính \(OC\).

 

b) \(\widehat {OEC} = 90^\circ \) do đó điểm \(E\) thuộc đường tròn đường kính \(OC\).

Vậy tứ giác \(OIEC\) nội tiếp đường tròn đường kính \(OC\), suy ra \(\widehat {CIE} = \widehat {COE}\).

 

* Chứng minh tam giác \(HIE\) cân tại \(I\).

 

Ta có:

\(\widehat {CIE} = \widehat {IHE} + \widehat {IEH}\)

\(\widehat {COE} = 2\widehat {CAE} = 2\widehat {CHE}\)

 

Theo chứng minh trên \(\widehat {CIE} = \widehat {COE}\) nên \(\widehat {IHE} + \widehat {IEH} = 2\widehat {CHE}\) suy ra \(\widehat {IEH} = \widehat {IHE}\) do đó tam giác \(HIE\) cân tại \(I\).

 

c) Trong trường hợp \(BA < BD\), trên đoạn thẳng \(HM\) lấy điểm \(P\) sao cho \(\widehat {APB} = 90^\circ \). Chứng minh ba điểm \(O,\;P,\;B\) thẳng hàng.

Tam giác \(OAB\) cân tại \(O\) nên \(\widehat {OBA} = \widehat {OAB}\)

Ta có \(\widehat {BOA} = 2\widehat {BCA}\) suy ra \(180^\circ  - \left( {\widehat {OBA} + \widehat {OAB}} \right) = 2\widehat {BCA}\)

Hay \(180^\circ  - 2\widehat {OBA} = 2\widehat {BCA}\) nên \(\widehat {OBA} + \widehat {BCA} = 90^\circ \) \(\left( 1 \right)\)

Mà \(\widehat {HAC} + \widehat {HCA} = 90^\circ \;\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(\widehat {HAC} + \widehat {HCA} = \widehat {OBA} + \widehat {BCA}\)

nên \(\widehat {HAC} = \widehat {OBA}\;\left( 3 \right)\)

 

Tam giác \(AHC\) vuông tại \(H\), \(M\) là trung điểm \(AC\) nên \(MA = MH\) do đó tam giác \(MAH\) cân tại \(M\) nên \(\widehat {MAH} = \widehat {MHA}\;\left( 4 \right)\)

Từ \(\left( 3 \right)\) và \(\left( 4 \right)\) ta có \(\widehat {OBA} = \widehat {MHA}\) \(\left( * \right)\)

 

Tứ giác \(ABHP\) nội tiếp đường tròn đường kính \(AB\) nên \(\widehat {ABP} = \widehat {AHP}\) \(\left( {**} \right)\)

 

Từ \(\left( * \right),\;\left( {**} \right)\) ta có \(\widehat {ABO} = \widehat {ABP}\) nên hai tia \(BP,\;BO\) trùng nhau, do đó \(3\) điểm \(O,\;P,\;B\) thẳng hàng

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP