Câu hỏi:

11/01/2026 12 Lưu

Một mảnh vườn hình chữ nhật có chu vi\[200m\], diện tích\[240{m^2}\]. Tính các kích thước của mảnh vườn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi hai kích thước của vườn là a, b (m; x, y>0)

Ta có \(a + b = \frac{{200}}{2} = 100\) và \(a.b = 2400\)

Theo ứng dụng của định lý Viète suy ra a, b là nghiệm của phương trình

\({x^2} - 100x + 2400 = 0\)

Giải phương trình ta có \({x_1} = 60\); \({x_2} = 40\) (thỏa mãn điều kiện)

Vậy các kích thước của mảnh vườn là 60m và 40m

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \[BC = x\]

Khi đó \(AB = 2\sqrt {25 - {x^2}} \)

Diện tích hình chữ nhật ABCD là:

\(S = CD.AB = x.2\sqrt {25 - {x^2}} = 2\sqrt {{x^2}\left( {25 - {x^2}} \right)} \,(c{m^2})\)

Áp dụng bất đẳng thức Cauchy cho hai số không âm ta có:

\({x^2} + \left( {25 - {x^2}} \right) \ge 2\sqrt {{x^2}\left( {25 - {x^2}} \right)} \) hay \(25 \ge 2\sqrt {{x^2}\left( {25 - {x^2}} \right)} \)

Hay \(S = 2\sqrt {{x^2}\left( {25 - {x^2}} \right)} \le 25\)

Dấu bằng xảy ra khi \({x^2} = 25 - {x^2}\) suy ra \({x^2} = \frac{{25}}{2}\)hay \(x = \frac{{5\sqrt 2 }}{2}\)

Vậy diện tích lớn nhát của hình chữ nhật là \(25\,c{m^2}\) khi \(x = \frac{{5\sqrt 2 }}{2}\)

Lời giải

\(\sqrt {{{\left( {3 - \sqrt 5 } \right)}^2}} + \sqrt {{{\left( {\sqrt 5 + 2} \right)}^2}} = \left| {3 - \sqrt 5 } \right| + \left| {\sqrt 5 + 2} \right| = 3 - \sqrt 5 + \sqrt 5 + 2 = 5\,\,\,\left( {vì,\,3 > \sqrt 5 \,} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\(60^\circ \)

B.\(90^\circ \)

C.\(120^\circ \)

D.\(180^\circ \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP