Câu hỏi:

13/01/2026 6 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có các đỉnh thỏa mãn \(\overrightarrow {OA}  = \overrightarrow i  - \overrightarrow j \), \(\overrightarrow {OB}  = 3\overrightarrow i  + 4\overrightarrow j \), \(\overrightarrow {OC}  =  - 5\overrightarrow i \).

a) \(A\left( {1; - 1} \right),B\left( {3;4} \right),C\left( { - 5;0} \right)\).
Đúng
Sai
b) Nếu \(ABCD\) là hình bình hành thì điểm \(D\) có tọa độ là \(D\left( { - 3;5} \right)\).
Đúng
Sai
c) \(\overrightarrow {AB}  = \left( {2;5} \right)\).
Đúng
Sai
d) Giả sử \(M\left( {a;b} \right)\) là điểm đối xứng của \(A\) qua \(B\). Khi đó \(2a - b = 1\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) \(\overrightarrow {OA}  = \overrightarrow i  - \overrightarrow j \)\(\overrightarrow {DB}  =  - \frac{3}{5}\overrightarrow {DC} \); \(\overrightarrow {OB}  = 3\overrightarrow i  + 4\overrightarrow j  \Rightarrow B\left( {3;4} \right)\); \(\overrightarrow {OC}  =  - 5\overrightarrow i  \Rightarrow C\left( { - 5;0} \right)\).

b) Gọi \(D\left( {x;y} \right)\). Có \(\overrightarrow {AD}  = \left( {x - 1;y + 1} \right),\overrightarrow {BC}  = \left( { - 8; - 4} \right)\).

Vì \(ABCD\) là hình bình hành nên \(\left\{ \begin{array}{l}x - 1 =  - 8\\y + 1 =  - 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - 7\\y =  - 3\end{array} \right.\)\( \Rightarrow D\left( { - 7; - 3} \right)\).

c) \(\overrightarrow {AB}  = \left( {2;5} \right)\).

d) \(M\left( {a;b} \right)\) là điểm đối xứng của \(A\) qua \(B\) nên \(B\) là trung điểm của \(MA\).

Khi đó \(\left\{ \begin{array}{l}{x_M} = 2{x_B} - {x_A}\\{y_M} = 2{y_B} - {y_A}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2 \cdot 3 - 1\\b = 2 \cdot 4 - \left( { - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 5\\b = 9\end{array} \right.\).

Khi đó \(2a - b = 1\).

Đáp án: a) Đúng;    b) Sai;     c) Đúng;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Có \(\overrightarrow {AM}  = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB}  = \left( { - 2; - 1} \right)\).

Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM}  = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y =  - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x =  - 7\\y =  - 1\end{array} \right. \Rightarrow \overrightarrow {AM}  = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM}  = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM}  = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x =  - 7;y =  - 1\). Vậy \(x + y =  - 8\).

Trả lời: −8.

Lời giải

Lời giải

Gọi \(I\left( {x;y} \right)\) là điểm sao cho \(\overrightarrow {IA}  + 2\overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0 \).

Ta có \(\overrightarrow {IA}  = \left( {1 - x; - 4 - y} \right),\overrightarrow {IB}  = \left( { - 2 - x;2 - y} \right),\overrightarrow {IC}  = \left( { - 5 - x;4 - y} \right)\).

Theo bài ta có \(\overrightarrow {IA}  + 2\overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l}1 - x + 2\left( { - 2 - x} \right) + 3\left( { - 5 - x} \right) = 0\\ - 4 - y + 2\left( {2 - y} \right) + 3\left( {4 - y} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 - x - 4 - 2x - 15 - 3x = 0\\ - 4 - y + 4 - 2y + 12 - 3y = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 6x - 18 = 0\\ - 6y + 12 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y = 2\end{array} \right.\)\( \Rightarrow I\left( { - 3;2} \right)\).

Ta có \(\overrightarrow {MA}  + 2\overrightarrow {MB}  + 3\overrightarrow {MC}  = \overrightarrow {MI}  + \overrightarrow {IA}  + 2\overrightarrow {MI}  + 2\overrightarrow {IB}  + 3\overrightarrow {MI}  + 3\overrightarrow {IC} \)\( = 6\overrightarrow {MI}  + \overrightarrow {IA}  + 2\overrightarrow {IB}  + 3\overrightarrow {IC}  = 6\overrightarrow {MI} \).

Do \(\left| {\overrightarrow {MA}  + 2\overrightarrow {MB}  + 3\overrightarrow {MC} } \right| = 6\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(MI\) nhỏ nhất.

Lại có \(M \in Ox\) nên \(MI\) nhỏ nhất khi \(M\) là hình chiếu của \(I\left( { - 3;2} \right)\) trên \(Ox\).

Suy ra tọa độ \(M\left( { - 3;0} \right)\). Vậy \(T =  - 6\).

Trả lời: −6.

Câu 3

a) Phương trình chính tắc của Elip đi qua hai điểm \(A\) và \(B\) là \(\frac{{{x^2}}}{{4,5}} + \frac{{{y^2}}}{9} = 1\)
Đúng
Sai
.b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).
Đúng
Sai
c) Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \) là \({x^2} + {\left( {y - 3} \right)^2} = 5\).
Đúng
Sai
d) Đường tròn \(\left( C \right)\) đi qua hai điểm \(A,B\) và có tâm \(I\) nằm trên \(\Delta \) có bán kính là \(\sqrt 5 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) có tâm \(I\left( {2; - 1} \right)\) và bán kính \(R = 9\).
Đúng
Sai
b) Phương trình đường tròn tâm \(I\left( { - 3; - 5} \right)\) và bán kính \(R = 1\) là \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 5} \right)^2} = 1\).
Đúng
Sai
c) Phương trình đường tròn đi qua ba điểm \(A\left( {5;3} \right),B\left( {1; - 5} \right),C\left( {2;2} \right)\) là \(\left( C \right):{\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 25\).
Đúng
Sai
d) Đường tròn \(\left( C \right):{x^2} + {y^2} - 4x + 8y + 4 = 0\) có tâm \(I\left( {2; - 4} \right)\) và bán kính \(R = 9\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP