Trong mặt phẳng tọa độ \(Oxy\), cho \(\Delta ABC\) biết \(A\left( { - 3;4} \right),B\left( { - 3;1} \right),C\left( {1;2} \right)\).
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) \(\overrightarrow {AB} = \left( {0; - 3} \right)\).
b) Gọi \(H\left( {x;y} \right)\). Ta có \(\overrightarrow {AH} = \left( {x + 3;y - 4} \right),\overrightarrow {BC} = \left( {4;1} \right),\overrightarrow {BH} = \left( {x + 3;y - 1} \right)\).
Vì \(H\) là hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\) nên \(AH \bot BC\) và \(B,H,C\) thẳng hàng.
Khi đó ta có hệ \(\left\{ \begin{array}{l}\overrightarrow {AH} \cdot \overrightarrow {BC} = 0\\\overrightarrow {BH} = k\overrightarrow {BC} \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4\left( {x + 3} \right) + \left( {y - 4} \right) = 0\\x + 3 = 4k\\y - 1 = k\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{{39}}{{17}}\\y = \frac{{20}}{{17}}\end{array} \right.\)\( \Rightarrow H\left( { - \frac{{39}}{{17}};\frac{{20}}{{17}}} \right)\).
c) Ta có \(\overrightarrow {AC} = \left( {4; - 2} \right)\)
\(\cos \widehat {BAC} = \frac{{\overrightarrow {AB} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right|}}\)\( = \frac{{0 \cdot 4 + \left( { - 3} \right) \cdot \left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 3} \right)}^2}} \cdot \sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{6\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).
d) Gọi \(M\left( {x;y} \right)\). Khi đó \(\overrightarrow {MA} = \left( { - 3 - x;4 - y} \right)\).
Khi đó \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \left( { - 7 - x; - y} \right)\).
Vì \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l} - 7 - x = 0\\ - y = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 7\\y = 0\end{array} \right.\)\( \Rightarrow M\left( { - 7;0} \right)\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Có \(\overrightarrow {AB} = \left( { - 1;3} \right)\) là vectơ chỉ phương của \(AB\) nên nhận \(\overrightarrow n = \left( {3;1} \right)\) làm vectơ pháp tuyến.
Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow n = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + y - 8 = 0\).
Vì \(C \in d \Rightarrow C\left( {t;2t - 8} \right)\).
Ta có \(AB = \sqrt {10} \) mà \({S_{\Delta ABC}} = 2 \Rightarrow d\left( {C,AB} \right) = \frac{4}{{\sqrt {10} }}\).
Khi đó \(\frac{{\left| {3t + \left( {2t - 8} \right) - 8} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \frac{4}{{\sqrt {10} }}\)\( \Leftrightarrow \left| {5t - 16} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = \frac{{12}}{5}\end{array} \right.\).
Với \(t = 4 \Rightarrow C\left( {4;0} \right)\) (loại).
Với \(t = \frac{{12}}{5} \Rightarrow C\left( {\frac{{12}}{5}; - \frac{{16}}{5}} \right)\). Do đó \(a + 2b = - 4\).
Trả lời: −4.
Lời giải
Lời giải
Có \(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).
Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).
Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).
\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).
Trả lời: −8.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.