Câu hỏi:

13/01/2026 33 Lưu

Trong hệ trục tọa độ \(Oxy\), cho hai điểm \(A\left( {3;0} \right),B\left( {2; - 1} \right)\) và đường thẳng \(\Delta :2x - y + 8 = 0\).

a) Phương trình chính tắc của Elip đi qua hai điểm \(A\) và \(B\) là \(\frac{{{x^2}}}{{4,5}} + \frac{{{y^2}}}{9} = 1\)
Đúng
Sai
.b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).
Đúng
Sai
c) Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \) là \({x^2} + {\left( {y - 3} \right)^2} = 5\).
Đúng
Sai
d) Đường tròn \(\left( C \right)\) đi qua hai điểm \(A,B\) và có tâm \(I\) nằm trên \(\Delta \) có bán kính là \(\sqrt 5 \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Giả sử \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Vì Elip đi qua hai điểm \(A\) và \(B\) nên \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{a^2}}} + \frac{1}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 1,8\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{{1,8}} = 1\).

b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).

c) \(R = d\left( {B,\Delta } \right) = \frac{{\left| {2 \cdot 2 - \left( { - 1} \right) + 8} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{13}}{{\sqrt 5 }}\).

Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = \frac{{169}}{5}\).

d) Gọi \(I\left( {a;b} \right)\) là tâm của đường tròn \(\left( C \right)\).

Theo đề ta có \(\left\{ \begin{array}{l}IA = IB\\I \in \Delta \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I \in \Delta \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {3 - a} \right)^2} + {b^2} = {\left( {2 - a} \right)^2} + {\left( { - 1 - b} \right)^2}\\2a - b + 8 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a + 2b = 4\\2a - b =  - 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 2\\b = 4\end{array} \right.\)

Vậy \(I\left( { - 2;4} \right)\). Suy ra \(R = IA = \sqrt {{{\left( {3 + 2} \right)}^2} + {4^2}}  = \sqrt {41} \).

Đáp án: a) Sai;    b) Đúng;   c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Có \(\overrightarrow {AB}  = \left( { - 1;3} \right)\) là vectơ chỉ phương của \(AB\) nên nhận \(\overrightarrow n  = \left( {3;1} \right)\) làm vectơ pháp tuyến.

Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow n  = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + y - 8 = 0\).

Vì \(C \in d \Rightarrow C\left( {t;2t - 8} \right)\).

Ta có \(AB = \sqrt {10} \) mà \({S_{\Delta ABC}} = 2 \Rightarrow d\left( {C,AB} \right) = \frac{4}{{\sqrt {10} }}\).

Khi đó \(\frac{{\left| {3t + \left( {2t - 8} \right) - 8} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \frac{4}{{\sqrt {10} }}\)\( \Leftrightarrow \left| {5t - 16} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = \frac{{12}}{5}\end{array} \right.\).

Với \(t = 4 \Rightarrow C\left( {4;0} \right)\) (loại).

Với \(t = \frac{{12}}{5} \Rightarrow C\left( {\frac{{12}}{5}; - \frac{{16}}{5}} \right)\). Do đó \(a + 2b =  - 4\).

Trả lời: −4.

Lời giải

Lời giải

Có \(\overrightarrow {AM}  = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB}  = \left( { - 2; - 1} \right)\).

Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM}  = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y =  - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x =  - 7\\y =  - 1\end{array} \right. \Rightarrow \overrightarrow {AM}  = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM}  = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM}  = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x =  - 7;y =  - 1\). Vậy \(x + y =  - 8\).

Trả lời: −8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({M_1}\left( { - 1; - 2} \right)\).  
B. \({M_1}\left( {1; - 2} \right)\). 
C. \({M_1}\left( {2;1} \right)\). 
D. \({M_1}\left( { - 1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2x + 3y + 4 = 0\). 
B. \(2x + 3y - 3 = 0\). 
C. \(x + 3y + 5 = 0\).  
D. \(3x - 2y - 7 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tọa độ của \(\overrightarrow {BC} \) là \(\left( {0; - 4} \right)\).
Đúng
Sai
b) Tọa độ trung điểm của \(AB\) là \(\left( {\frac{3}{2};1} \right)\).
Đúng
Sai
c) \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - 9\).
Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP