Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 10\) và đường thẳng \(\Delta :3x - 4y - 1 = 0\).
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\) và \(R = \sqrt {10} \).
b) Có \(\overrightarrow {IA} = \left( {1;3} \right)\).
Tiếp tuyến của đường tròn tại \(A\left( {4;1} \right)\) và có \(\overrightarrow {IA} = \left( {1;3} \right)\) là vectơ pháp tuyến có phương trình là
\(\left( {x - 4} \right) + 3\left( {y - 1} \right) = 0\)\( \Leftrightarrow x + 3y - 7 = 0\).
c) Ta có \(d\left( {I,\Delta } \right) = \frac{{\left| {3 \cdot 3 - 4 \cdot \left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{16}}{5} > R\).
Do đó đường thẳng \(\Delta \) không cắt đường tròn \(\left( C \right)\).
d) \(d\left( {M,\Delta } \right) = \frac{{\left| {3 \cdot 3 - 4 \cdot 4 - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = \frac{8}{5}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Tọa độ trung điểm \(M\) là \(\left\{ \begin{array}{l}x = \frac{{5 + \left( { - 3} \right)}}{2} = 1\\y = \frac{{3 + \left( { - 1} \right)}}{2} = 1\end{array} \right.\)\( \Rightarrow M\left( {1;1} \right)\).
Khi đó \(\overrightarrow {BM} = \left( {0; - 4} \right)\). Vậy \(BM = \sqrt {{0^2} + {{\left( { - 4} \right)}^2}} = 4\).
Trả lời: 4.
Lời giải
Lời giải
Gọi \(I\left( {x;y} \right)\) là điểm sao cho \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \).
Ta có \(\overrightarrow {IA} = \left( {1 - x; - 4 - y} \right),\overrightarrow {IB} = \left( { - 2 - x;2 - y} \right),\overrightarrow {IC} = \left( { - 5 - x;4 - y} \right)\).
Theo bài ta có \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l}1 - x + 2\left( { - 2 - x} \right) + 3\left( { - 5 - x} \right) = 0\\ - 4 - y + 2\left( {2 - y} \right) + 3\left( {4 - y} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 - x - 4 - 2x - 15 - 3x = 0\\ - 4 - y + 4 - 2y + 12 - 3y = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 6x - 18 = 0\\ - 6y + 12 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 2\end{array} \right.\)\( \Rightarrow I\left( { - 3;2} \right)\).
Ta có \(\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} = \overrightarrow {MI} + \overrightarrow {IA} + 2\overrightarrow {MI} + 2\overrightarrow {IB} + 3\overrightarrow {MI} + 3\overrightarrow {IC} \)\( = 6\overrightarrow {MI} + \overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = 6\overrightarrow {MI} \).
Do \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right| = 6\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(MI\) nhỏ nhất.
Lại có \(M \in Ox\) nên \(MI\) nhỏ nhất khi \(M\) là hình chiếu của \(I\left( { - 3;2} \right)\) trên \(Ox\).
Suy ra tọa độ \(M\left( { - 3;0} \right)\). Vậy \(T = - 6\).
Trả lời: −6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.