Một chiếc Phà chở khách qua sông từ điểm \(A\left( {1;2} \right)\) đến điểm \(B\left( {1;50} \right)\) bên kia sông. Nhưng vì có gió và nước chảy mạnh nên chiếc Phà qua bên kia sông tại điểm \(C\left( {38;50} \right)\). Góc lệch của Phà với lúc dự tính ban đầu là bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Lời giải
Ta có \(\overrightarrow {AB} = \left( {0;48} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\) nên \(\overrightarrow {{n_1}} = \left( {1;0} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).
Ta có \(\overrightarrow {AC} = \left( {37;48} \right)\)là một vectơ chỉ phương của đường thẳng \(AC\) nên \(\overrightarrow {{n_2}} = \left( { - 48;37} \right)\) là một vectơ pháp tuyến của đường thẳng \(AC\).
Góc lệch của Phà với lúc dự tính ban đầu chính là góc giữa hai đường thẳng \(AB\) và \(AC\).
Ta có \(\cos \left( {AB,AC} \right) = \frac{{\left| {1 \cdot \left( { - 48} \right) + 0 \cdot 37} \right|}}{{\sqrt {{1^2} + {0^2}} \cdot \sqrt {{{\left( { - 48} \right)}^2} + {{37}^2}} }} = \frac{{48}}{{\sqrt {3673} }}\)\( \Rightarrow \widehat A \approx 38^\circ \).
Trả lời: 38.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Có \(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).
Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).
Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).
\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).
Trả lời: −8.
Lời giải
Lời giải
Gọi \(I\left( {x;y} \right)\) là điểm sao cho \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \).
Ta có \(\overrightarrow {IA} = \left( {1 - x; - 4 - y} \right),\overrightarrow {IB} = \left( { - 2 - x;2 - y} \right),\overrightarrow {IC} = \left( { - 5 - x;4 - y} \right)\).
Theo bài ta có \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l}1 - x + 2\left( { - 2 - x} \right) + 3\left( { - 5 - x} \right) = 0\\ - 4 - y + 2\left( {2 - y} \right) + 3\left( {4 - y} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 - x - 4 - 2x - 15 - 3x = 0\\ - 4 - y + 4 - 2y + 12 - 3y = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 6x - 18 = 0\\ - 6y + 12 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 2\end{array} \right.\)\( \Rightarrow I\left( { - 3;2} \right)\).
Ta có \(\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} = \overrightarrow {MI} + \overrightarrow {IA} + 2\overrightarrow {MI} + 2\overrightarrow {IB} + 3\overrightarrow {MI} + 3\overrightarrow {IC} \)\( = 6\overrightarrow {MI} + \overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = 6\overrightarrow {MI} \).
Do \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right| = 6\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(MI\) nhỏ nhất.
Lại có \(M \in Ox\) nên \(MI\) nhỏ nhất khi \(M\) là hình chiếu của \(I\left( { - 3;2} \right)\) trên \(Ox\).
Suy ra tọa độ \(M\left( { - 3;0} \right)\). Vậy \(T = - 6\).
Trả lời: −6.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.