Câu hỏi:

13/01/2026 5 Lưu

Một tháp triển lãm có mặt cắt hình hypebol có phương trình \(\frac{{{x^2}}}{{{{18}^2}}} - \frac{{{y^2}}}{{{{36}^2}}} = 1\). Cho biết chiều cao của tháp là 100 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol bằng khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp (đơn vị m) (làm tròn kết quả đến hàng đơn vị).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

31

Lời giải

Do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng \(r\).

Do điểm \(M\left( {r;50} \right)\) nằm trên hypebol nên thay tọa độ của điểm \(M\) vào phương trình của hypebol ta có \(\frac{{{r^2}}}{{{{18}^2}}} - \frac{{{{50}^2}}}{{{{36}^2}}} = 1 \Rightarrow r = 18\sqrt {1 + \frac{{{{50}^2}}}{{{{36}^2}}}}  \approx 31\) m.

Vậy bán kính của nóc và đáy của tháp bằng 31 m.

Trả lời: 31.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(I\left( {x;y} \right)\) là điểm sao cho \(\overrightarrow {IA}  + 2\overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0 \).

Ta có \(\overrightarrow {IA}  = \left( {1 - x; - 4 - y} \right),\overrightarrow {IB}  = \left( { - 2 - x;2 - y} \right),\overrightarrow {IC}  = \left( { - 5 - x;4 - y} \right)\).

Theo bài ta có \(\overrightarrow {IA}  + 2\overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l}1 - x + 2\left( { - 2 - x} \right) + 3\left( { - 5 - x} \right) = 0\\ - 4 - y + 2\left( {2 - y} \right) + 3\left( {4 - y} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 - x - 4 - 2x - 15 - 3x = 0\\ - 4 - y + 4 - 2y + 12 - 3y = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 6x - 18 = 0\\ - 6y + 12 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y = 2\end{array} \right.\)\( \Rightarrow I\left( { - 3;2} \right)\).

Ta có \(\overrightarrow {MA}  + 2\overrightarrow {MB}  + 3\overrightarrow {MC}  = \overrightarrow {MI}  + \overrightarrow {IA}  + 2\overrightarrow {MI}  + 2\overrightarrow {IB}  + 3\overrightarrow {MI}  + 3\overrightarrow {IC} \)\( = 6\overrightarrow {MI}  + \overrightarrow {IA}  + 2\overrightarrow {IB}  + 3\overrightarrow {IC}  = 6\overrightarrow {MI} \).

Do \(\left| {\overrightarrow {MA}  + 2\overrightarrow {MB}  + 3\overrightarrow {MC} } \right| = 6\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(MI\) nhỏ nhất.

Lại có \(M \in Ox\) nên \(MI\) nhỏ nhất khi \(M\) là hình chiếu của \(I\left( { - 3;2} \right)\) trên \(Ox\).

Suy ra tọa độ \(M\left( { - 3;0} \right)\). Vậy \(T =  - 6\).

Trả lời: −6.

Câu 2

a) Phương trình chính tắc của Elip đi qua hai điểm \(A\) và \(B\) là \(\frac{{{x^2}}}{{4,5}} + \frac{{{y^2}}}{9} = 1\)
Đúng
Sai
.b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).
Đúng
Sai
c) Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \) là \({x^2} + {\left( {y - 3} \right)^2} = 5\).
Đúng
Sai
d) Đường tròn \(\left( C \right)\) đi qua hai điểm \(A,B\) và có tâm \(I\) nằm trên \(\Delta \) có bán kính là \(\sqrt 5 \).
Đúng
Sai

Lời giải

Lời giải

a) Giả sử \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Vì Elip đi qua hai điểm \(A\) và \(B\) nên \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{a^2}}} + \frac{1}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 1,8\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{{1,8}} = 1\).

b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).

c) \(R = d\left( {B,\Delta } \right) = \frac{{\left| {2 \cdot 2 - \left( { - 1} \right) + 8} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{13}}{{\sqrt 5 }}\).

Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \) là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = \frac{{169}}{5}\).

d) Gọi \(I\left( {a;b} \right)\) là tâm của đường tròn \(\left( C \right)\).

Theo đề ta có \(\left\{ \begin{array}{l}IA = IB\\I \in \Delta \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I \in \Delta \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {3 - a} \right)^2} + {b^2} = {\left( {2 - a} \right)^2} + {\left( { - 1 - b} \right)^2}\\2a - b + 8 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a + 2b = 4\\2a - b =  - 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 2\\b = 4\end{array} \right.\)

Vậy \(I\left( { - 2;4} \right)\). Suy ra \(R = IA = \sqrt {{{\left( {3 + 2} \right)}^2} + {4^2}}  = \sqrt {41} \).

Đáp án: a) Sai;    b) Đúng;   c) Sai;    d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).
Đúng
Sai
b) Phương trình tiếp tuyến của \(d\) của đường tròn \(\left( C \right)\) tại điểm \(A\left( {4;1} \right)\) là \(x + 3y + 3 = 0\).
Đúng
Sai
c) Đường thẳng \(\Delta \) cắt đường tròn \(\left( C \right)\) tại hai điểm phân biệt.
Đúng
Sai
d) Khoảng cách từ điểm \(M\left( {3;4} \right)\) đến đường thẳng \(\Delta \) bằng \(\frac{8}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP